

ECHT-FLEX-KUPPLUNG

INHALT

INDEX	
PRODUKTMERKMALE S.3	-4
PRODUKTAUFBAUS.5	-6
PRODUKTANWENDUNGEN S.7	-8
PRODUKTAUSWAHL S.9	-10
MODELLLISTE	1
NEF-Nabe	2
Serie NES	3-19
Serie NEF	
Doppelte Kupplung	0-21
Lange doppelte Kupplung	2-23
Vorrätige lange doppelte KupplungS.2	4
Kurze doppelte Kupplung	:5
Einfache Kupplung	6-27
KlemmungS.2	8-30
Kegelbefestigung S.3	1-33
Serie NEH	4-35
Sonstige Serien	6-37
MONTAGE	8-41
BOHRUNGSSPEZIFIKATIONEN	2-44

INDEX

PRODUKTSERIENLISTE

Siehe S. 13-19

Die Produkte der Serie NES sind kleine Scheibenkupplungen aus Extra-Super-Duralumin. Sowohl doppelte als auch einfache Kupplungen sind verfügbar.

NEF Doppelte Kupplung Raue oder Keilnutbohrung

Siehe S. 20-21

Bei der doppelten Kupplung werden Winkel-, Parallel- und Axialversatz von zwei Scheibensätzen ausgeglichen.

NEF Lange doppelte Kupplung Raue oder Keilnutbohrung

Siehe S. 22-25

Die lange doppelte Kupplung fungiert als schwimmende Welle, wenn der Abstand zwischen den Wellenenden groß ist.

NEF Einfache Kupplung Raue oder Keilnutbohrung

Siehe S. 26-27

Bei der einfachen Kupplung werden Winkel- und Axialversatz von einer Scheibe ausgeglichen.

NEF Klemmung

Siehe S. 28-30

Siehe die vorstehend genannte Seite, wenn die Wellen durch Klemmung miteinander verbunden werden (Reibkupplung durch Festziehen einer Schraube).

NEF Kegelbefestigung

Siehe S. 31-33

Siehe die vorstehend genannte Seite, wenn die Wellen durch Kegelbefestigung miteinander verbunden werden.

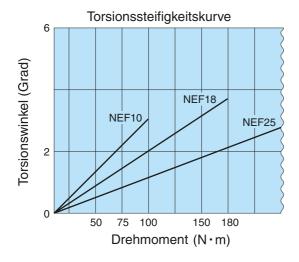
Serie NEH

Siehe S. 34-35

Bei den Produkten der Serie NEH handelt es sich um große doppelte Kupplungen.

Sonstige Serien

Siehe S. 36-37


Tsubaki kann Kupplungen für nahezu jede Anwendung herstellen, wie etwa unsere G-Typ-Produkte, die mit Zahnkupplungen kompatibel sind.

ECHT-FLEX-KUPPLUNG

Um die ECHT-FLEX-KUPPLUNG zur ultimativen Scheibenkupplung zu machen, optimiert Tsubaki ihre Konstruktion mit Hilfe der Finite-Elemente-Methode. Diese Kupplung erfüllt alle Ihre Anforderungen. Sie muss nicht geschmiert werden, hat kein Spiel und zeichnet sich aufgrund der verbesserten Torsionssteifigkeit durch eine größere Präzision aus. Dank ihres hervorragenden Betriebsverhaltens überträgt die flexible Kupplung zuverlässig Drehmomente und gleicht Wellenversatz aus. Tsubaki bietet eine umfassende Palette von ECHT-FLEX-Kupplungen an, von der kleinen, hochpräzisen NES-Serie mit einer kleinsten Drehmomentübertragung von 0,7 N·m bis zur großen NEH-Serie mit einer Drehmomentübertragung von bis zu 176000 N·m.

Zu unserem umfassenden Modellprogramm, das Ihnen die Auswahl sehr leicht macht, gehören die lange doppelte Scheibenkupplung, die als schwimmende Welle fungiert, die U-Scheibenkupplung, bei der das Distanzelement ohne Zerlegen der Scheibenverbindung aus- und eingebaut werden kann, die G-Scheibenkupplung, die Zahnkupplungen ersetzen kann, sowie weitere Ausführungen mit unterschiedlichen Wellenverbindungsmethoden (Power-Lock, Keilnut, Klemmung usw.) Diese ECHT-FLEX-Kupplungen erfüllen bereits jetzt alle Ihre künftigen Kupplungsanforderungen.

Scheibe (für hohe Torsionssteifigkeit)

Die optimale Form wird durch eine Festigkeitsanalyse ermittelt.

PRODUKTMERKMALE

Fertiggebohrte Kupplungen

Einfache und doppelte Kupplungen mit vorbearbeiteten Bohrungen für Wellen mit Standarddurchmesser (neuer

JIS-Keil, Standardtyp) sind

immer vorrätig und können

kurzfristig geliefert werden.

Lange Lebensdauer

verschleißfesten Teile haben die ECHT-FLEX-Kupplungen eine beeindruckend lange Lebensdauer.

Herausragende Umweltbeständigkeit

Da die ECHT-FLEX-Kupplung ganz aus Metall gefertigt ist und keine Schmierung erfordert, hält sie hohen Temperaturen stand. Aufgrund der Spezialbehandlung ihrer Oberfläche ist sie für praktisch iede Umgebung geeignet.

Schmierungsfrei

Da keine gleitenden oder sich bewegenden Teile vorhanden sind, gibt es auch keine Reibflächen, so dass sich die Schmierung erübrigt.

Originalscheiben von TSUBAKI

Unsere Originalscheiben zeichnen sich durch ihre hohe Torsionssteifigkeit und axiale Flexibilität aus.

Einfache Montage

Im Druckflansch der Power-Lock-Ausführung befindet sich eine als Verdrehsicherung fungierende Bohrung, so dass die Schrauben mühelos ohne Mitdrehen der Welle festgezogen werden können. Bei den Ü-Kupplungen

(doppelte Unit-Scheibenkupplung) kann das Distanzelement ein- und ausgebaut werden, ohne dass die Scheibenverbindung zerlegt werden muss.

Kein Spiel

Da das Drehmoment durch Reibungsverbindungen übertragen wird, gibt es kein Spiel und nur eine minimale Hysterese. Daher eignet sich die ECHT-FLEX für Servomotor- und andere Anwendungen, die eine hochpräzise Kraftübertragung erfordern.

Axiale Flexibilität

Wenn sich die Motorwelle durch die Betriebswärme dehnt, absorbiert die Kupplung die Dehnung und übt dabei keinen unnötigen Druck auf das Lager aus.

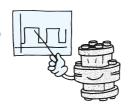
13

Schnelle Lieferung

Neben unseren Produktbeständen mit Wellenbohrungen mit Standarddurchmesser bietet Tsubaki Produkte mit anderen Wellenbohrungsdurchmessern mit kurzen Lieferzeiten an.

Hohe Torsionssteifigkeit

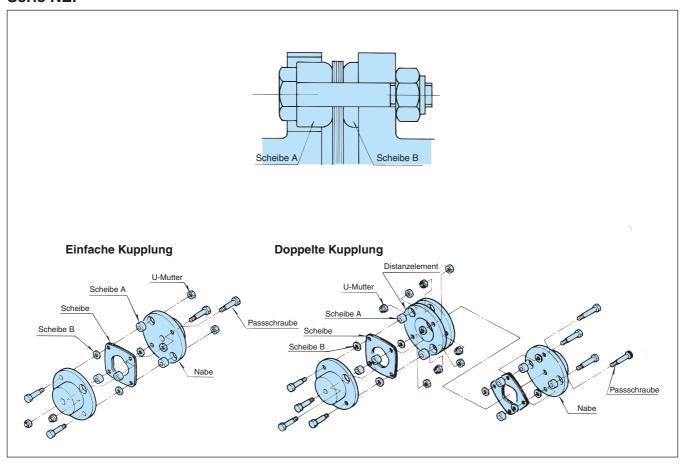
Da aufgrund der hohen Torsionssteifigkeit die elastische Verformung deutlich verringert ist, können selbst geringfügige Drehbewegungen präzise auf die angetriebene Seite übertragen werden.


Optimal für Servomotoren

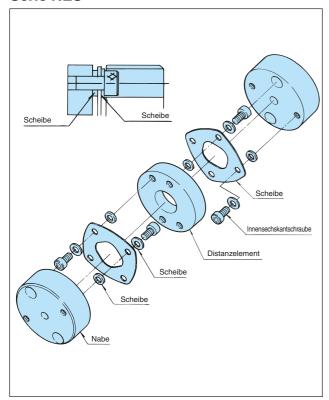
Dank einer neuen Fertigungsmethode ist diese Kupplung stabil und leicht. Nachdem wir unsere Produktpalette um die Serie NES erweitert haben, können wir jetzt Kupplungen anbieten, die für kleine bis große Servomotoren geeignet sind

Geringes Trägheitsmoment

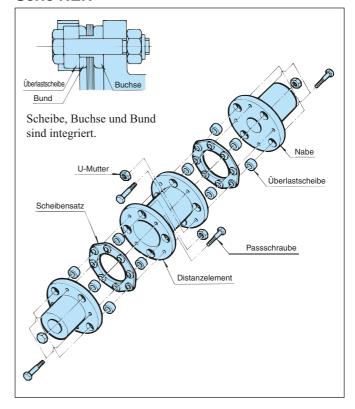
Wir haben unnötige Flanschbereiche entfernt und bieten eine einzigartige quadratische Nabe an. so dass das Trägheitsmoment minimal ist. Bei der Serie NES bestehen Nabe und Distanzelement aus Extra-Super-Duralumin, so dass das Gewicht erheblich geringer ist.

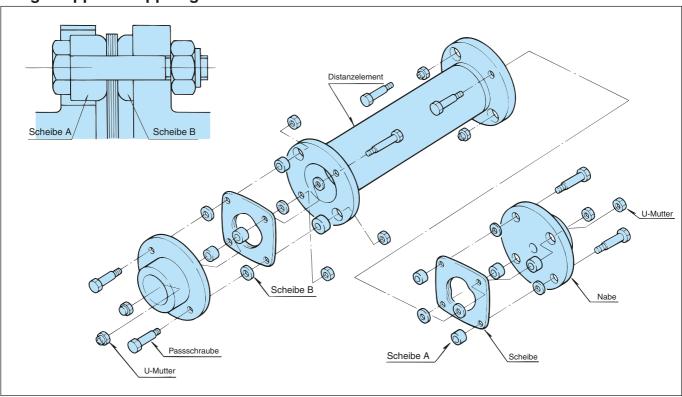

Schwimmende Welle

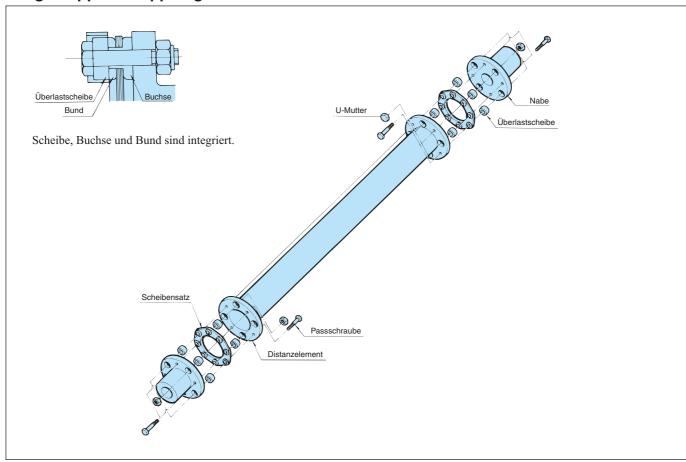
Die lange doppelte Scheibenkupplung fungiert als schwimmende Welle. die Kräfte von einer sich in gewissem Abstand befindenden Antriebseinheit ohne Hilfe von Lagern überträgt.



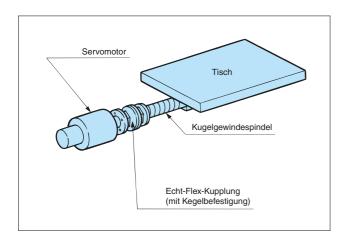
PRODUKTAUFBAU


Serie NEF

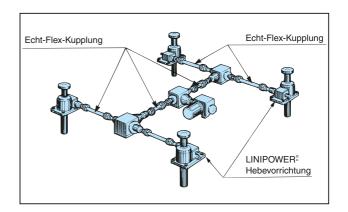

Serie NES


Serie NEH

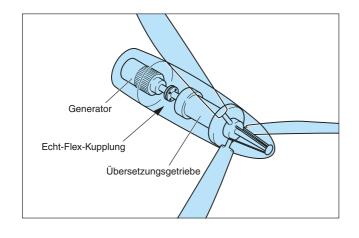
Lange doppelte Kupplung Serie NEF

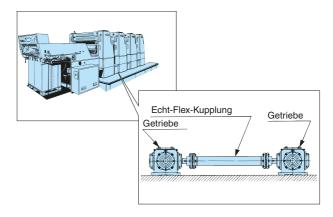


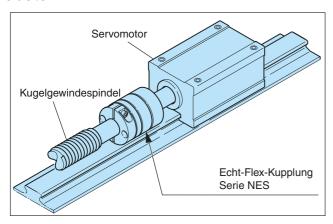
Lange doppelte Kupplung Serie NEH

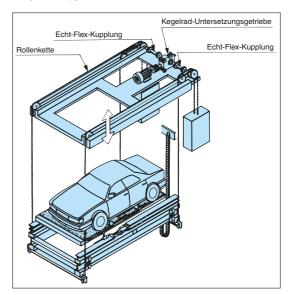


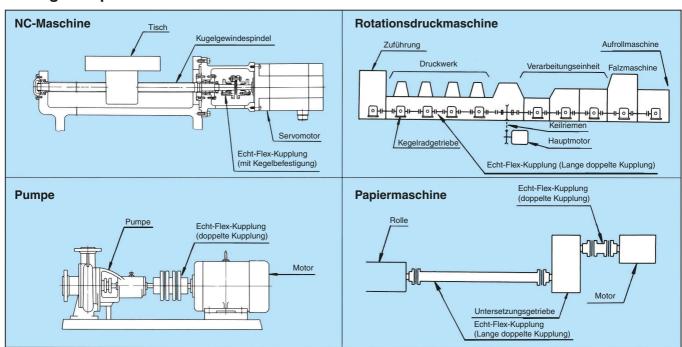
PRODUKTANWENDUNGEN


NC-Bearbeitungszentren


Hebevorrichtungen


Windräder


Druckpressen


Roboter

Parklifte

Montagebeispiele

PRODUKTAUSWAHL

1. Berechnung des korrekten Drehmoments

1-1. Anschluss an einen Servomotor oder Schrittmotor

Zur Bestimmung des korrekten Drehmoments müssen Sie das maximale Drehmoment des Servo- bzw. Schrittmotors mit dem Servicefaktor (SF) multiplizieren, der dem in der nachstehenden Tabelle genannten Lasttyp entspricht.

SF-Tabelle (Servicefaktor)

Lasttyp	Konstante Last	Mittlere variable Last	Große variable Last
Servicefaktor (SF)	1,2	1,4	1,5

1-2. Anschluss an einen Universalmotor

Zur Bestimmung des korrekten Drehmoments müssen Sie das mit der nachstehenden Formel berechnete Lastmoment mit dem Servicefaktor (SF) multiplizieren, der dem in der Tabelle rechts genannten Lasttyp entspricht.

$$T = \frac{60000 \times P}{2 \pi \times n} \left\{ T = \frac{974 \times P}{n} \right\}$$

 $T' = T \times SF$

T = Lastmoment $N \cdot m \{kgf \cdot m\}$

$$\begin{split} P &= \text{\"{U}bertragungskraft} & kW \\ n &= \text{Drehzahl} & \text{U/min} \end{split}$$

 $T = Korrektes Drehmoment N·m {kgf·m}$

SF-Tabelle (Servicefaktor)

			Motortyp		
Lasttyp	Universalmot	or/Gasturbine		Motor	
	Geringes Trägheitsmoment	Hohes Trägheitsmoment	4 Zylinder	6 Zylinder	8 Zylinder
Konstante Last	1,5-1,75	1,75-2,0	2,5-4,0	2,0-2,5	1,5-2,0
Mittlere variable Last	2,0-2,5	2,5-3,0	4,0-5,0	2,5-3,5	2,0-3,0
Große variable Last	3,0-4,5	4,5-6,0	4,5-5,5	3,0-4,0	2,5-3,5

^{*} Wird eine Stoßbelastung erwartet, wird das korrekte Drehmoment durch Multiplizieren des maximalen Nenndrehmoments des Motors mit einem Stoßfaktor von 1 bis 2,5 bestimmt.

2. Wellendurchmesser

Achten Sie darauf, dass der Durchmesser der einzubauenden Welle den zulässigen Wellendurchmesser für die Kupplung nicht überschreitet. Überprüfen Sie beim Power-Lock-System die Größe, die Menge und das Übertragungsmoment.

Achten Sie beim Klemmtyp darauf, dass das unter (1) bestimmte korrekte Drehmoment das für die Klemmvorrichtung zulässige Übertragungsmoment nicht überschreitet.

3. Maximale Drehzahl für lange doppelte Scheibenkupplungen

Wird die lange doppelte Scheibenkupplung mit hoher Drehzahl eingesetzt, ist zu vermeiden, dass die Resonanzfrequenz erreicht wird.

Achten Sie bei der Auswahl der langen doppelten Scheibenkupplung darauf, dass das Maß "J" und die Drehzahl der einzelnen Modelle nicht überschritten werden.

Überschreitet die Betriebsdrehzahl den vorgegebenen Wert, muss eine höhere Modellnummer ausgewählt werden.

Liegt die Betriebsdrehzahl nicht innerhalb des folgenden Bereichs oder kann keine höhere Modellnummer ausgewählt werden, kann u. a. eine lange doppelte Highspeed-Scheibenkupplung angefertigt werden (siehe S. 37).

Einheit: mm

														Li	nheit: mm
Betriebsdrehzahl					Maxima	ale Läng	e des la	ngen Dis	stanzelei	ments (N	1aß "J")				
Modell-Nr.	3600	2000	1800	1500	1200	1000	900	<i>75</i> 0	720	600	500	400	300	200	150
NEF 04W	980	1310	1380	1510	1680	1840	1940	2130	2170	2380	2610	2910	3360	4120	4750
NEF 10W	1120	1500	1580	1 <i>7</i> 30	1940	2120	2230	2450	2500	2730	2990	3350	3860	4730	5460
NEF 18W	1180	1580	1660	1820	2040	2230	2350	2570	2620	2870	3150	3520	4060	4970	5740
NEF 25W	1310	1760	1850	2030	2260	2480	2610	2860	2920	3190	3500	3910	4510	5520	
NEF 45W	1440	1930	2030	2230	2490	2720	2870	3140	3210	3510	3840	4290	4960		
NEF 80W	1560	2090	2200	2410	2690	2950	3100	3400	3470	3800	4160	4650	5360		
NEF130W	1 <i>7</i> 80	2380	2510	2750	3070	3360	3540	3870	3950	4330	4740	5290			
NEF210W	1890	2520	2660	2910	3250	3560	3750	4100	4190	4580	5020	5610			
NEF340W	2024	2720	2870	3130	3500	3830	4040	4420	4510	4930	5400				
NEF540W	2180	2910	3070	3360	3750	4100	4320	4730	4820	5280	5780				
NEF700W	2270	3030	3190	3490	3890	4260	4490	4910	5010	5490					
NEH 09W	2190	2930	3090	3380	3780	4130	4360	4770	4870	5330	5830				
NEH 14W	2190	2930	3090	3380	3780	4130	4360	4770	4870	5330	5830				
NEH 20W	2400	3200	3380	3690	4130	4520	4760	5210	5320	5820					
NEH 30W	2570	3430	3610	3960	4420	4840	5100	5580	5690						
NEH 41W	2650	3540	3730	4080	4560	4990	5260	5760	5870						

^{*}Bei Verwendung der Klemmung darf das Drehmoment, auch nicht für kurze Zeit, nicht größer sein als das Übertragungsmoment der Wellenbohrung (siehe S. 30), einschließlich Anlaufmoment

4. Sicherheitsvorkehrungen für den Anschluss eines Servomotor-Antriebssystems

In Abhängigkeit von der Eigenfrequenz und vom Status der elektrischen Steuerung des Gesamtsystems können von einem Kugelgewinde-Antriebssystem mit Servomotor infolge der auf dessen Eigenschaften beruhenden Schwingungen starke Vibrationen oder unnormale Geräusche erzeugt werden. Passen Sie in diesem Fall die Torsionssteifigkeit und das Trägheitsmoment des gesamten Antriebssystems an. Erhöhen Sie dazu die systemeigene Drehfrequenz oder gleichen Sie die Servoverstärkung mit der Abstimmfunktion der elektrischen Steuerung des Servomotors an.

5. Wählen Sie die ECHT-FLEX-Kupplung gemäß den vorstehenden Anforderungen (1 bis 4) aus der Ubertragungsleistungstabelle aus.

Dynamische Auswuchtung

Da ECHT-FLEX-Kupplungen gut ausgewuchtet sind, ist eine spezielle Auswuchtung in der Regel nicht erforderlich. Wird die Kupplung bei hoher Drehzahl eingesetzt oder wird ein langes Distanzelement verwendet, muss u. U. eine Auswuchtung vorgenommen werden.

Für die dynamische Auswuchtung setzen wir die beiden folgenden Methoden ein:

- 1) Durchbohren der Stirnseite des Distanzelement-Flanschendes und
- 2) Anbringen eines Auswuchtgewichts am Umfang des Distanzelementrohrs. (Das Distanzelement mit einem Auswuchtgewicht sehen Sie unten. Position und Menge der Auswuchtgewichte sind von den Betriebsbedingungen anhängig. Achten Sie darauf, dass das Auswuchtgewicht die Drehung nicht beeinträchtigt.)

Wenn Sie eine Auswuchtung wünschen, geben Sie bitte eine der vorstehenden Methoden (1 oder 2) an.



Distanzelement mit Auswuchtgewicht

Hinweise zu langem Abstand zwischen Wellenenden

Für große Abstände zwischen den Wellenenden bietet Tsubaki eine lange doppelte Scheibenkupplung, die schwimmend und ohne Zwischenwellenlager verwendet werden kann. Sofern diese Ihre Anforderungen erfüllt, empfehlen wir diesen Kupplungstyp.

Wird aus Gründen der Zweckmäßigkeit anstelle der langen doppelten Kupplung ein Zwischenwellenlager verwendet, müssen Sie die Zwischenwelle mit einem Lager befestigen, damit sie nicht schwimmt. In diesem Fall wird empfohlen, die doppelte Scheibenkupplung zu verwenden.

Lange doppelte Kupplung

Doppelte Kupplung + Feststehende Zwischenwelle + Doppelte Kupplung

Ist der Abstand zwischen den Wellen kurz und wird eine schwimmende Zwischenwelle verwendet, müssen Sie eine einfache Kupplung verwenden.

Verwenden Sie unter diesen Bedingungen in keinem Fall die doppelte Kupplung, da dies wegen der ausgeprägten Schwimmneigung der Zwischenwelle sehr gefährlich ist.

Einfache Kupplung + Schwimmende Zwischenwelle + Einfache Kupplung

Doppelte Kupplung + Schwimmende Zwischenwelle + Doppelte Kupplung

Beachten Sie besonders die vorstehenden Anmerkungen, wenn Sie Zahnkupplungen oder Rollenkettenkupplungen durch Scheibenkupplungen ersetzen.

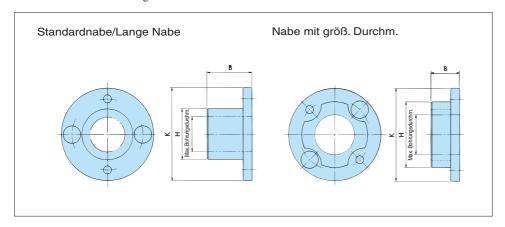
MODELLLISTE

Тур	Zulässiges		Keilnut-	Raue	Raue	Standard-				Nabe	entyp			Bear	beitung	der Boh	rung			
-57	Drehmoment N·m		rchmesser φ Nabe mit	Bohrung	Bohrung (Einfache	länge (Lange	Lange doppelte	C d	Nabe		Nabe mit	T	Our doct				Konische	G-Typ	A-Naben-	U-Typ
Modell-Nr.	{kgf·m}	Standard- nabe	größ. Durchm.	(Doppelte Kupplung)		doppelte Kupplung)	Kupplung	Gerade Nabe	geringer Trägheit	Standard- nabe	größ. Durchm.	Lange Nabe	Quadrat. Nabe	Keilnut	Kegel- befestigung	Klemmung	Bohrung (φ 11, φ 16)		Тур	
NES07	0,7 { 0,07}	-	-	-	_	-	_	0	-	_	-	-	-		_	0	_	-	_	-
NES15	1,5 { 0,15}	-	-	-	_	-	-	0	-	_	-	-	-		_	0	_	-	-	_
NES20	2 { 0,2 }	_	-	_	_	-	_	0	-	_	-	-	_		_	0	_	_	_	_
NES30	3 { 0,31}	_	-	-	-	-	-	0	-		-	-	-			0	-	-		_
NES50	5 { 0,51}	_	-	-	_	-	-	0	0	_	-	_	-	-	_	0	_	-	_	_
NES70	7 { 0,71}	-	-	-	-	-	-	0	0	-	-	-	-	-	-	0	-	-	-	_
NES100	10 { 1 }	-	-	-	-	-	-	0	0	_	-	-	-	-	_	0	Lassen Sie sich zu diesen Modelltypen von uns beraten.	-	-	_
NES250	25 { 2,6 }	-	-	-	-	-	-	0	0	-	-	-	-	-	-	0	Lassen Sie sich zu diesen odelltypen von uns berate	-	-	_
NES800	80 { 8,2 }	-	-	-	-	-	-	0	0	_	-	-	-	-	_	0	sen Sie Iltypen	-	-	_
NES1300	130 { 13 }	-	-	_	_	-	_	0	0	_	-	-	_	_	_	0	Las	-	_	_
NES2000	200 { 20,4 }	-	-	-	_	-	-	0	0	-	-	-	-	_	-	0	_	-	-	-
NES3000	300 { 30,6 }	-	-	-	-	-	_	0	0	_	-	-	_	-	_	0	-	-	_	_
NEF02	19,6	20	25	0	0	-	-	-	-	0	0	0	-	0	-	0	Δ	-	-	-
NEF04	39,2	23	28	0	0	-	Δ	_	-	0	0	0	_	0	0	0	Δ	-	_	_
NEF10	98 { 10 }	32	40	0	0	0	Δ	_	-	0	0	0	0	0	0	0	0	_	_	-
NEF18	176 { 18 }	35	42	0	0	0	Δ	-	-	0	0	0	0	0	0	0	-	-	_	_
NEF25	245 { 25 }	42	48	0	0	0	Δ	-	-	0	0	0	0	0	0	0	-	-	-	_
NEF45	441 { 45 }	50	60	0	0	0	Δ	-	-	0	0	0	-	0	-	0	_	Δ	-	_
NEF80	784 { 80 } 1270	60	70	0	0	0	Δ	_	-	0	0	0	-	0	-	-	-	Δ	-	_
NEF130	{ 130 }	74	80	0	0	0	Δ	-	-	0	0	0	-	0	_	-	-	Δ	-	_
NEF210	{ 210 }	83	90	0	0	0	Δ	_	-	0	0	0	-		_	-	-		_	-
NEF340	3330 { 340 } 5290	95	110	0	0	0	Δ	_	-	0	0	0	-	Δ	_	-	-	Δ	-	-
NEF540	540 } 6860	109	120	0	0	-	Δ	_	-	0	0	0	_		_	-	_		_	_
NEF700	{ 700 }	118	130	0	0	-	Δ	-	-	0	0	0	-	\triangle	-	-	-	Δ	-	-
NEH09	{ 900 }	111	(158)	0		_	Δ	_	_	0	-		-	Δ			-	Δ	Δ	
NEH14	{ 1400 } 19600	111	(158)	0	en.	_	Δ	_	_	0	_	en.	-	Δ	en.		-	Δ	Δ	
NEH20	{ 2000 } 29400	133	(182)	0	ıs berat	_	Δ	_	-	0	-	ıs berat	_		ıs berat	_	_			
NEH30	{ 3000 } 40200	152	(206)	0	nou nov	_	Δ	_	_	0		un uox	-	Δ	un uox		-	Δ	Δ	
NEH41	{ 4100 } 53900	165	(224)	0	ltypen	_	Δ	_	-	0	-	ltypen		Δ	ltypen			Δ	Δ	
NEH55	{ 5500 } 68600	187	_	Δ	Modell	_	Δ	_	-		-	Modell	_		Modell	_	_			
NEH70	{ 7000 } 88200	205	_	Δ	diesen	_	Δ	_	_		_	diesen	_		diesen	_	_			
NEH90	88200 { 9000 } 108000	231	_	\triangle	Lassen Sie sich zu diesen Modelltypen von uns beraten.	_	Δ	_	_	Δ	-	Lassen Sie sich zu diesen Modelltypen von uns beraten.	_	\triangle	Lassen Sie sich zu diesen Modelltypen von uns beraten.	_	_		assen Si	
NEH110	{ 11000 }	254	_	\triangle	ı Sie si	_	Δ	_	-	Δ	-	ı Sie si	_	\triangle	ı Sie si	_	_	Model	n zu die ltypen v beraten.	on uns
NEH135	132000 { 13500 }	263	-	Δ	Lasser	_	Δ	_	-	Δ		Lasser	_	Δ	Lasser	-	_		ociateil.	
NEH150	147000 { 15000 }	275	_	Δ		_	Δ	_	_	Δ	-		_	Δ		_	_			
NEH180	176000 { 18000 }	289	_	\triangle		_		_	-	Δ	-		-	\triangle		-	-			

Die Werte in Klammern für die Modelle NEH09 bis NEH41 gelten für die A-Nabe und für U-Typen.

○ : Standard△ : Nach Kundenwunsch

ABMESSUNGEN


Nabenabmessungen Serie NEF

Naben mit größerem Durchmesser

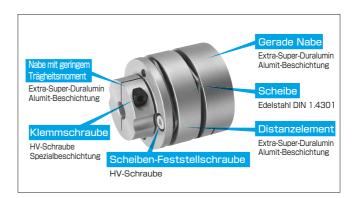
Ist der Durchmesser der einzubauenden Welle größer als der maximale Durchmesser der Wellenbohrung der Standardnabe, können Sie, auch wenn die Übertragungsleistung ausreichend Spielraum bietet, die Nabe mit größerem Durchmesser mit größerem Bohrungsdurchmesser (Maß "H") wählen. Auf diese Weise benötigen Sie kein größeres Modell.

Lange Naben

Ist der Keiloberflächendruck bei der Standardnabe zu groß, können Sie die lange Nabe wählen, bei der das Maß "B" länger ist, wodurch der Keiloberflächendruck verringert wird.

ABMESSUNGEN Einheit: mm

ADMEDOCITO								Elimett. Illin
							Max. Bohru	ingsdurchm.
		E	3	ŀ	4		Standardnabe/	Nabe mit größ.
Modell-Nr.	K					Raue Bohrung	Lange Nabe	Durchm.
		Standardnabe Nabe mit größ. Durchm.	Lange Nabe	Standardnabe Lange Nabe	Nabe mit größ. Durchm.	d	Keilnut	Keilnut
NEF02	57	20	_	32* Hinweis 1	45	8	20	25
NEF04	67,5	25,4	40	34	50	8	23	28
NEF10	81	25,4	40	46	66	10	32	40
NEF18	93	28,7	45	51	66	12	35	42
NEF25	104	33,5	50	61	78	15	42	48
NEF45	126	41,1	60	71	92	15	50	60
NEF80	143	47,8	70	84	104	15	60	70
NEF130	168	57,2	85	106	129	25	74	80
NEF210	194	63,5	120	118	147	25	83	90
NEF340	214	76,2	140	137	166	45	95	110
NEF540	246	88,9	140	156	191	50	109	120
NEF700	276	101,6	150	169	209	50	118	130


st Hinweis: In Verbindung mit NEF02 kann nur die Standardnabe verwendet werden.

Kleine, hochpräzise NES-Serie

- Anschluss an kleine Servomotoren und Schrittmotoren für Halbleiter-Fertigungseinrichtungen usw.
- Anschluss zwischen Servomotoren und Kugelgewindespindeln von Werkzeugmaschinen usw.
- Industrieroboter, elektronische Ausrüstung, Präzisionsinstrumente usw.

Geringes Trägheitsmoment und hohe Torsionssteifigkeit

Geringes Trägheitsmoment

Kombination aus Naben mit geringem Trägheitsmoment

Mit ihrer abgestuften Bauweise ist die Nabe in Bezug auf das niedrige Trägheitsmoment einzigartig.

Hohe Torsionssteifigkeit

Kombination aus geraden Naben

Dieses Modell bietet eine außergewöhnlich hohe Torsionssteifigkeit.

Vorteile beider Typen

Kombination aus Naben mit geringem Trägheitsmoment und geraden Naben

Dieses Modell besitzt eine Nabe mit geringem Trägheitsmoment und eine gerade Nabe.

Geringes Trägheitsmoment

Die Nabe zeichnet sich durch ihr geringes Gewicht aus und besteht aus besonders widerstandsfähigem Extra-Super-Duralumin. Durch unsere Naben-Originalgeometrie wird ein geringes Trägheitsmoment gewährleistet. Daher eignet sich diese Nabe ideal für Servomotoren die stark beschleunigt/verzögert werden und andere Anwendungen.

Hohe Torsionssteifigkeit

Dank ihrer hohen Torsionssteifigkeit und ihres hervorragenden Folgeverhaltens für Servomotoren eignet sich unserer gerade Nabe ideal für die Präzisionssteuerung.

Hohes Drehmoment und sichere Klemmkraft

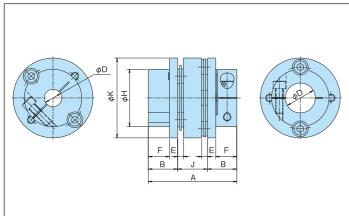
Die Klemmkraft an Wellen wird durch die Geometrie unserer Originalklemmung erhöht.

Beeindruckend umfassendes Produktsortiment

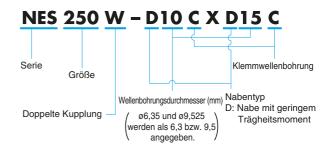
Mit 56 Ausführungen und 3.252 Kombinationen von Wellenbohrungsdurchmessern erfüllt die NES-Serie eine Vielzahl von Anforderungen. Ein solch umfassendes Sortiment können unsere Mitwetthewerber nicht anbieten

Kein Spiel

Das gesamte Drehmoment wird völlig spielfrei durch Reibungsschluss übertragen. Aufgrund dieses Merkmals und wegen ihrer hohen Torsionssteifigkeit eignet sich die NES-Serie hervorragend für die präzise Positionierung.


Einfache Montage

Zur Gewährleistung der Konzentrizität wird die Nabe auf beiden Seiten mit einer Spezialvorrichtung zentriert und montiert. Die NES-Serie wird durch Klemmung mit der Welle verbunden, wobei an jeder Nabe lediglich eine Klemmschraube festgezogen wird.


Umweltfreundlich

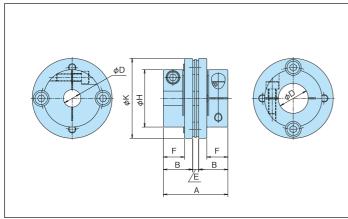
Die NES-Serie erfüllt die Anforderungen der RoHS-Richtlinien sowie die Bestimmungen in Bezug auf gefährliche chemische Substanzen (JIG, PFOS und SVHC [15 Substanzen]).

Doppelte Kupplung: Nabe mit geringem Trägheitsmoment x Nabe mit geringem Trägheitsmoment

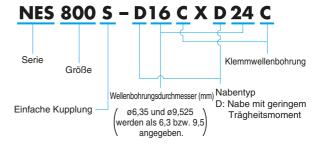
Referenznummernsystem (Beispiel)

* Kleineren Bohrungsdurchmesser zuerst angeben.

Modell-Nr.	Zulässiges Drehmoment	Hinweis 1) Max.	φD	sdurchmesser					essung mm	gen			N∙m	steifigkeit /rad n/rad}	Axiale Federkonstante		Hinweis ssiger V		Hinweis 2)	Hinweis 2)	Hinweis 2)
Modell-Nr.	N·m {kgf·m}	Drehzahl r/min	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	А	В	Е	F	Н	φΚ	J	Durchgangswelle Max. zulässiger Durchmesser	Ganze Kupplung	Nur Scheibe	N/mm {kgf/mm}	Winkel- versatz deg	Parallel- versatz mm	Axialversatz mm	Gewicht g	Trägheitsmoment kg·m²	{k g ·m²}
NES50W	5,0 {0,51}	18000	5-10	(unten).	37	12,5	1,5	9,3	21,5	34	12	13	1600 {160}	6500 {660}	25 {2,6}	2,0	0,18	±0,80	52	7,1x10°	0,28
NES70W	7,0 {0,71}	18000	8-14		45,5	15	1,75	11,8	26	37	15,5	16	2700 {280}	9500 {970}	29 {3,0}	2,0	0,24	±0,90	76	12,8x10 ⁶	0,51
NES100W	10 {1,0}	15000	8-15	Standard-Wellendurchmesser	48,1	15,7	2,6	11,5	29,5	44	16,7	17	4600 {470}	15000 {1500}	33 {3,4}	2,0	0,25	±1,1	125	28,8x10⁴	1,15
NES250W	25 {2,6}	10000	10-20	Wellen	59	20	3	14,4	38	55	19	22	8400 {860}	22000 {2200}	11 {1,1}	2,0	0,28	±1,4	230	83,1x10 ⁶	3,32
NES800W	80 {8,2}	10000	14-24	ındard-	70,9	23,5	4,7	16,9	46	64	23,9	25	1 <i>7</i> 000 {1 <i>7</i> 00}	39000 {4000}	27 {2,8}	2,0	0,34	±1,4	380	188 x10⁴	7,52
NES1300W	130 {13}	10000	19-32	für	97,9	31,5	5,2	22,6	54	82	34,9	36	28000 {2900}	110000 {11000}	33 {3,4}	2,0	0,52	±1,8	810	671 x10⁴	26,8
NES2000W	200 {20,4}	9000	25-35	Tabelle	98,6	30,5	5,6	21,6	69	92	37,6	45	46000 {4700}	270000 {27600}	43 {4,4}	2,0	0,56	±1,4	1140	1230 x10°	49,2
NES3000W	300 {30,6}	8000	32-42	Siehe	101,6	31,2	7,6	21	79	104	39,2	50	49000 {5000}	300000 {30600}	64 {6,5}	2,0	0,55	±1,8	1580	2230 x10 ⁻⁶	89,2

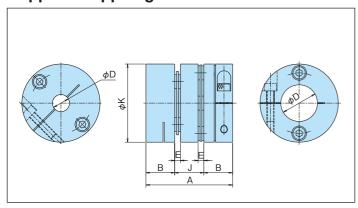

- Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.
 - 2. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
 - 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
 - 4. Die Spalten mit Werten in der nachstehenden Tabelle beziehen sich auf die Standard-Wellenbohrungsdurchmesser. Bei den Zahlen handelt es sich um die Übertragungsmomente.
 - 5. Die empfohlene Toleranz für die Montage auf der Welle ist h7. Beachten Sie jedoch, dass die empfohlene Toleranz der Servomotorwellenbohrung bei einem Wellenbohrungsdurchmesser von 35 (+0,010 bis 0) beträgt.

Übertragungsmoment mit Standard-Wellendurchmesser und -Wellenbohrungsdurchmesser (N·m)


M. LILN.		Anzugsmoment										Stan	dard-	Well	enbol	nrung	sdur	chme	sser (mm)									
Modell-Nr.	Schraubengrobe	N·m {kgf·m}	5	6	6,35	7	8	9	9,525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42
NES50	M3	1,9{0,19}	5	5	5	5	5	5	5	5																			
NES70	M3	1,9{0,19}					7	7	7	7	7	7	7																
NES100	M4	3,8{0,39}					10	10	10	10	10	10	10	10															
NES250	M4	3,8{0,39}								25	25	25	25	25	25	25	25	25	25										
NES800	M6	12{1,22}											80	80	80	80	80	80	80	80	80								
NES1300	M6	12{1,22}																105	105	110	115	120	125	130	130				
NES2000	M8	30{3,1}																				200	200	200	200	200			
NES3000	M8	30{3,1}																							235	245	255	260	265

Einfache Kupplung: Nabe mit geringem Trägheitsmoment x Nabe mit geringem Trägheitsmoment

Referenznummernsystem (Beispiel)


* Kleineren Bohrungsdurchmesser zuerst angeben.

Modell-Nr.	Zulässiges Drehmoment	Hinweis 1) Max.	φD	sdurchmesser				ssungen			Torsionss N·m {kgf·n		Axiale Federkonstante	Zulä	Hinweis S ssiger V	/	Hinweis 2) Gewicht	Hinweis 2)	Hinweis 2)
Modell-M.	N·m {kgf·m}	Drehzahl r/min	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	А	В	Е	F	Н	φΚ	Ganze Kupplung	Nur Scheibe	N/mm {kgf/mm}	Winkel- versatz deg	Parallel- versatz mm	Axialversatz mm	g	Trägheitsmoment kg·m²	{kg·m²}
NES50S	5,0 {0,51}	18000	5-10	er	26,5	12,5	1,5	9,3	21,5	34	2700 {280}	13000 {1300}	51 {5,2}	1,0	0,02	±0,40	34	3,9x10⁴	0,16
NES70S	7,0 {0,71}	18000	8-14	chmess	31,75	15	1,75	11,8	26	37	3500 {360}	19000 {1900}	58 {5,9}	1,0	0,02	±0,45	46	6,8x10⁴	0,27
NES100S	10 {1,0}	15000	8-15	Standard-Wellendurchmesser r vorherigen Seite).	34	15,7	2,6	11,5	29,5	44	6400 {650}	30000 {3000}	65 {6,6}	1,0	0,02	±0,55	78	15,9x10⁴	0,64
NES250S	25 {2,6}	10000	10-20	tandard-We vorherigen	43	20	3	14,4	38	55	12000 {1200}	44000 {4500}	21 {2,1}	1,0	0,02	±0,70	150	45,6x10⁴	1,82
NES800S	80 {8,2}	10000	14-24	r Stand ler vorh	51,7	23,5	4,7	16,9	46	64	25000 {2600}	78000 {8000}	52 {5,3}	1,0	0,02	±0,70	250	114 x10 ⁶	4,56
NES1300S	130 {13}	10000	19-32	Tabelle für S (auf der	68,2	31,5	5,2	22,6	54	82	37000 {3800}	220000 {22000}	65 {6,6}	1,0	0,02	±0,90	490	367 x10⁴	14,7
NES2000S	200 {20,4}	9000	25-35	Siehe Tal	66,6	30,5	5,6	21,6	69	92	71000 {7200}	540000 {55100}	67 {6,8}	1,0	0,02	±0,70	700	670 x10 ⁶	26,8
NES3000S	300 {30,6}	8000	32-42	S	70	31,2	7,6	21	79	104	81000 {8300}	610000 {62200}	85 {8,6}	1,0	0,02	±0,90	980	1260 x10 ⁶	50,4

Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.

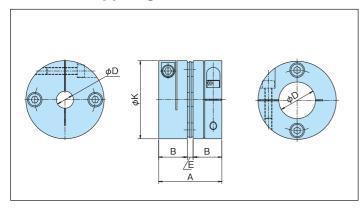
- 2. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
- 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
- 4. Die Spalten mit Werten in der Tabelle auf der vorherigen Seite unten beziehen sich auf die Standard-Wellenbohrungsdurchmesser.
- 5. Die empfohlene Toleranz für die Montage auf der Welle ist h7. Beachten Sie jedoch, dass die empfohlene Toleranz der Servomotorwellenbohrung bei einem Wellenbohrungsdurchmesser von 35 (+0,010 bis 0) beträgt.

Doppelte Kupplung: Gerade Nabe x Gerade Nabe

Referenznummernsystem (Beispiel)

 $*\, {\sf Kleineren \ Bohrungsdurchmesser \ zuerst \ angeben}.$

Modell-Nr.	Zulässiges Drehmoment	Hinweis 1) Max.	Hinwe Wellenbohrung Ф D	sdurchmesser				essunge mm	n		N·m	steifigkeit /rad n/rad}	Axiale Federkonstante		Hinweis :	,	Hinweis 2) Gewicht	Hinweis 2	/	Hinweis 2) GD ²
Woden-Ni.	N·m {kgf·m}	Drehzahl r/min	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	Α	В	Е	φΚ	J	Durchgangswelle Max. zulässiger Durchmesser	Ganze Kupplung	Nur Scheibe	N/mm {kgf/mm}	Winkel- versatz deg	Parallel- versatz mm	Axialversatz mm	g	kg·m²	ment	{k g ·m²}
NES07W	0,7 {0,07}	18000	4-6		18,9	7,5	0,85	16	3,9	6	210 {21}	600 {61}	87 {8,9}	1,4	0,05	±0,24	9	0,32×	10-6	0,01
NES15W	1,5 {0,15}	18000	4-8	en).	26	8,9	1,1	19	8,2	6,5	420 {43}	1300 {130}	47 {4,8}	2,0	0,12	±0,36	17	0,90x	10-6	0,04
NES20W	2,0 {0,20}	18000	5-10	r (unten).	31,7	11	1,1	24	9,7	10	1000 {100}	2800 {290}	43 {4,4}	2,0	0,15	±0,60	32	2,7x	10-6	0,11
NES30W	3,0 {0,31}	18000	6-16	messe	35,6	11,8	1,5	31	12	13	1600 {160}	4200 {430}	24 {2,4}	2,0	0,18	±0,80	53	8,0x	10-6	0,32
NES50W	5,0 {0,51}	18000	6-16	Standard-Wellendurchmesser	40	12,5	1,5	34	15	13	2100 {210}	6500 {660}	25 {2,6}	2,0	0,24	±0,80	76	14 x	10-6	0,54
NES70W	7,0 {0,71}	18000	8-20	Weller	45,5	15	1,75	37	15,5	16	4600 {470}	9500 {970}	29 {3,0}	2,0	0,24	±0,90	97	21 ×	10-6	0,84
NES100W	10 {1,0}	15000	8-22	dard-1	48,1	15,7	2,6	44	16,7	1 <i>7</i>	6200 {630}	15000 {1500}	33 {3,4}	2,0	0,25	±1,1	160	47 x	10-6	1,9
NES250W	25 {2,6}	10000	10-25	für Star	59	20	3	55	19	22	11000 {1100}	22000 {2200}	11 {1,1}	2,0	0,28	±1,4	320	140 x	10-6	5,7
NES800W	80 {8,2}	10000	14-30	elle fi	70,9	23,5	4,7	64	23,9	25	23000 {2300}	39000 {4000}	27 {2,8}	2,0	0,34	±1,4	510	320 ×	10-6	13
NES1300W	130 {13}	10000	20-35	Siehe Tabelle	97,9	31,5	5,2	82	34,9	36	46000 {4700}	110000 {11000}	33 {3,4}	2,0	0,52	±1,8	1200	1100 ×	10-6	45
NES2000W	200 {20,4}	9000	25-45	Sie	98,6	30,5	5,6	92	37,6	45	60000 {6120}	270000 {27600}	43 {4,4}	2,0	0,56	±1,4	1300	1700 ×	10-6	68
NES3000W	300 {30,6}	8000	35-50		102	31,2	7,6	104	39,2	50	68000 {6940}	300000 {30600}	64 {6,5}	2,0	0,55	±1,8	1800	2960 x	10-6	118


- Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.
 - $2. \ \ Die \ Werte \ für \ Gewicht, \ Trägheitsmoment \ und \ GD^2 \ beziehen \ sich \ auf \ den \ maximalen \ Wellenbohrungsdurchmesser.$
 - 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
 - 4. Die Spalten mit Werten in der nachstehenden Tabelle beziehen sich auf die Standard-Wellenbohrungsdurchmesser. Bei den Zahlen handelt es sich um die Übertragungsmomente.
 - 5. Die empfohlene Toleranz für die Montage auf der Welle ist h7. Beachten Sie jedoch, dass die empfohlene Toleranz der Servomotorwellenbohrung bei einem Wellenbohrungsdurchmesser von 35 (+0,010 bis 0) beträgt.

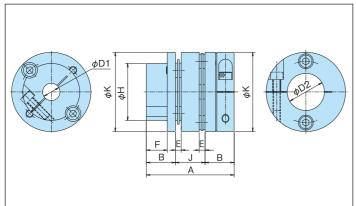
Übertragungsmoment mit Standard-Wellendurchmesser und -Wellenbohrungsdurchmesser (N·m)

Modell-Nr.	C-11	Anzugsmoment N·m											St	anda	rd-V	Velle	nboh	nrung	gsdui	rchm	esse	r (m	m)										
Modell-M.	Schraubengrobe	{kgf·m}	4	5	6	6,35	7	8	9	9,525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50
NES07	M2	0,50{0,04}	0,7	0,7	0,7																												
NES15	M2	0,50{0,04}	1,3	1,5	1,5	1,5	1,5	1,5																									
NES20	M2,5	1,0{0,10}		2	2	2	2	2	2	2	2																						
NES30	M2,5	1,0{0,10}			3	3	3	3	3	3	3	3	3	3	3	3																	
NES50	M3	1,9{0,19}			5	5	5	5	5	5	5	5	5	5	5	5																	
NES70	M3	1,9{0,19}						7	7	7	7	7	7	7	7	7	7	7	7	7													
NES100	M4	3,8{0,39}						10	10	10	10	10	10	10	10	10	10	10	10	10	10												
NES250	M4	3,8{0,39}									25	25	25	25	25	25	25	25	25	25	25	25	25										
NES800	M6	12{1,22}												80	80	80	80	80	80	80	80	80	80	80	80								
NES1300	M6	12{1,22}																		107	118	130	130	130	130	130	130						
NES2000	M8	30{3,1}																					200	200	200	200	200	200	200	200	200		
NES3000	M8	30{3,1}																									300	300	300	300	300	300	300

Einfache Kupplung: Gerade Nabe x Gerade Nabe

Referenznummernsystem (Beispiel) NES 30 S - N10 C X N12 C Serie Klemmwellenbohrung Größe Wellenbohrungsdurchmesser (mm) ø6,35 und ø9,525 N: Gerade Nabe Einfache Kupplung werden als 6,3 bzw. 9,5 angegeben. * Kleineren Bohrungsdurchmesser zuerst angeben.

Modell-Nr.	Zulässiges Drehmoment	Hinweis 1) Max.	Hinwo Wellenbohrung Ф D	sdurchmesser			sungen		Torsionss N·m {kgf·m		Axiale Federkonstante		Hinweis 3	,	Hinweis 2) Gewicht	Hinweis 2) Trägheitsmoment	Hinweis 2)
Modell-M.	N·m {kgf·m}	Drehzahl r/min	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	A	В	E	φК	Ganze Kupplung	Nur Scheibe	N/mm {kgf/mm}	Winkel- versatz deg	Parallel- versatz mm	Axialversatz mm	g	k g· m²	{kg·m²}
NES07S	0,7 {0,07}	18000	4-6		15,85	7,5	0,85	16	430 {44}	1200 {120}	1 <i>7</i> 0 {1 <i>7</i> }	0,7	0,02	±0,12	7	0,26x10	0,01
NES15S	1,5	18000	4-8		18,4	8,9	1,1	19	780 {80}	2600 {270}	93 {9,5}	1,0	0,02	±0,18	12	0,63x10 ⁴	0,03
NES20S	2,0	18000	5-10	<u>.</u>	23,1	11	1,1	24	1800 {180}	5600 {570}	86 {8,8}	1,0	0,02	±0,30	23	1,9x10 ^{<}	0,08
NES30S	3,0	18000	6-16	Standard-Wellendurchmesser r vorherigen Seite).	25,1	11,8	1,5	31	3700 {380}	8400 {860}	48 {4,9}	1,0	0,02	±0,40	37	5,5x10 ⁴	0,22
NES50S	5,0 {0,51}	18000	6-16	lendurc seite).	26,5	12,5	1,5	34	4500 {460}	13000 {1300}	51 {5,2}	1,0	0,02	±0,40	49	8,8x10 ^{<}	0,35
NES70S	7,0 {0,71}	18000	8-20	rd-Wel	31,75	15	1,75	37	7400 {760}	19000 {1900}	58 {5,9}	1,0	0,02	±0,45	66	14 x10	0,57
NES100S	10 {1,0}	15000	8-22	le für Standard-We auf der vorherigen	34	15,7	2,6	44	10000 {1000}	30000 {3000}	65 {6,6}	1,0	0,02	±0,55	110	32 x10 ⁴	1,3
NES250S	25 {2,6}	10000	10-25	selle für (auf de	43	20	3	55	19000 {1900}	44000 {4500}	21 {2,1}	1,0	0,02	±0,70	220	100 x10 ⁴	4,1
NES800S	80 {8,2}	10000	14-30	Siehe Tabelle (au	51,7	23,5	4,7	64	39000 {4000}	78000 {8000}	52 {5,3}	1,0	0,02	±0,70	350	220 x10°	8,7
NES1300S	130 {13}	10000	20-35	Si	68,2	31,5	5,2	82	77000 {7900}	220000 {22000}	65 {6,6}	1,0	0,02	±0,90	790	780 x10°	31
NES2000S	200 {20,4}	9000	25-45		66,6	30,5	5,6	92	110000 {11200}	540000 {55100}	67 {6,8}	1,0	0,02	±0,70	880	1140 x10	46
NES3000S	300 {30,6}	8000	35-50		70	31,2	7,6	104	150000 {15300}	610000 {62200}	85 {8,6}	1,0	0,02	±0,90	1200	1990 x10	80


- Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.
 - 2. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
 - 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
 - 4. Die Spalten mit Werten in der Tabelle auf der vorherigen Seite unten beziehen sich auf die Standard-Wellenbohrungsdurchmesser.
 - 5. Die empfohlene Toleranz für die Montage auf der Welle ist h7. Beachten Sie jedoch, dass die empfohlene Toleranz der Servomotorwellenbohrung bei einem Wellenbohrungsdurchmesser von 35 (+0,010 bis 0) beträgt.

D: Nabe mit geringem

N: Gerade Nabe

Trägheitsmoment

Doppelte Kupplung: Nabe mit geringem Trägheitsmoment x Gerade Nabe

Referenznummernsystem (Beispiel) NES 100 W - D 8 C X N 20 C Serie Klemmwellenbohrung Größe

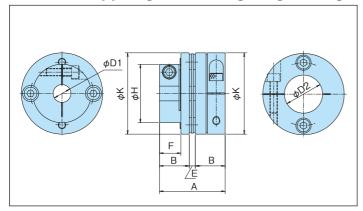
werden als 6,3 bzw. 9,5 angegeben. * Kleineren Bohrungsdurchmesser zuerst angeben.

ø6,35 und ø9,525

Doppelte Kupplung

Wellenbohrungsdurchmesser (mm) Nabentyp

Modell-	Zulässiges Drehmoment	Hinweis 1) Max.	φ Dì	sdurchmesser	Hinwe Wellenbohrung Ф D2	sdurchmesser				Abme	essun mm	gen			Torsionssteifigkeit N·m/rad {kgf·m/rad}	Axiale Federkonstante		Hinweis ssiger	(3) Versatz	Hinweis 2) Gewicht	Hinweis 2) Trägheitsmoment	Hinweis 2)
Nr.	N·m {kgf·m}	Drehzahl r/min	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	Α	В	Е	F	Н	φК	J	Durchgangswelle Max. zulässiger Durchmesser	Nur Scheibe	N/mm {k g f/mm}	Winkel- versatz deg	Parallel- versatz mm	Axialversatz mm	g	kg·m²	{kg·m²}
NES50W	5,0 {0,51}	18000	5-10	(unten).	6-16	(unten).	37	12,5	1,5	9,3	21,5	34	12	13	6500 {660}	25 {2,6}	2,0	0,18	±0,80	59	9,2x10⁴	0,37
NES70W	7,0 {0,71}	18000	8-14		8-20		45,5	15	1,75	11,8	26	37	15,5	16	9500 {970}	29 {3,0}	2,0	0,24	±0,90	85	16,1x10⁴	0,64
NES100W	10 {1,0}	15000	8-15	-Wellendurchmesser	8-22	-Wellendurchmesser	48,1	15,7	2,6	11,5	29,5	44	16,7	17	15000 {1500}	33 {3,4}	2,0	0,25	±1,1	140	35,8x10⁴	1,43
NES250W	25 {2,6}	10000	10-20	Wellen	10-25	Wellen	59	20	3	14,4	38	55	19	22	22000 {2200}	11 {1,1}	2,0	0,28	±1,4	260	105 x10⁴	4,20
NES800W	80 {8,2}	10000	14-24	Standard-	14-30	Standard-	70,9	23,5	4,7	16,9	46	64	23,9	25	39000 {4000}	27 {2,8}	2,0	0,34	±1,4	430	235 x10 ⁻⁶	9,40
NES1300W	130 {13}	10000	19-32	für	20-35	für	97,9	31,5	5,2	22,6	54	82	34,9	36	110000 {11000}	33 {3,4}	2,0	0,52	±1,8	950	860 x10⁴	34,4
NES2000W	200 {20,4}	9000	25-35	Tabelle	25-45	Tabelle	98,6	30,5	5,6	21,6	69	92	37,6	45	270000 {27600}	43 {4,4}	2,0	0,56	±1,4	1230	1450 x10 ⁻⁶	58,0
NES3000W	300 {30,6}	8000	32-42	Siehe	35-50	Siehe	101,6	31,2	7,6	21	79	104	39,2	50	300000 {30600}	64 {6,5}	2,0	0,55	±1,8	1700	2560 x10 ⁻⁶	102


- Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.
 - 2. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
 - 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
 - 4. Die Spalten mit Werten in der nachstehenden Tabelle beziehen sich auf die Standard-Wellenbohrungsdurchmesser. Bei den Zahlen handelt es sich um die Übertra-
 - 5. Die empfohlene Toleranz für die Montage auf der Welle ist h7. Beachten Sie jedoch, dass die empfohlene Toleranz der Servomotorwellenbohrung bei einem Wellenbohrungsdurchmesser von 35 (+0,010 bis 0) beträgt.

Übertragungsmoment mit Standard-Wellendurchmesser und -Wellenbohrungsdurchmesser (N·m) Nabe mit geringem Trägheitsmoment (ϕ D1)

M. J.II N.	C-llv0-	Anzugsmoment									Sta	ndarc	l-Wel	lenbo	ohrun	gsdu	rchm	esser	(φD	1) (n	nm)								
Modell-Nr.	Schraubengrobe	N·m {kgf·m}	5	6	6,35	7	8	9	9,525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42
NES50	M3	1,9{0,19}	5	5	5	5	5	5	5	5																			
NES70	M3	1,9{0,19}					7	7	7	7	7	7	7																
NES100	M4	3,8{0,39}					10	10	10	10	10	10	10	10															
NES250	M4	3,8{0,39}								25	25	25	25	25	25	25	25	25	25										
NES800	M6	12{1,22}											80	80	80	80	80	80	80	80	80								
NES1300	M6	12{1,22}																105	105	110	115	120	125	130	130				
NES2000	M8	30{3,1}																				200	200	200	200	200			
NES3000	M8	30{3,1}																							235	245	255	260	265

Einfache Kupplung: Nabe mit geringem Trägheitsmoment x Gerade Nabe

Referenznummernsystem (Beispiel)

^{*} Kleineren Bohrungsdurchmesser zuerst angeben.

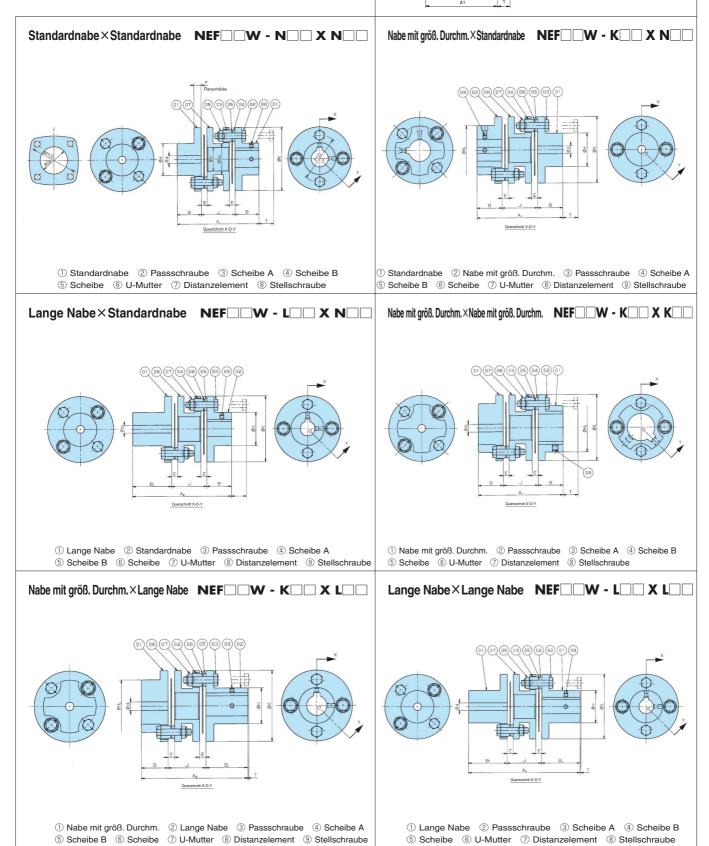
Modell-Nr.	Zulässiges Drehmoment	Hinweis 1) Max.	Hinwe Wellenbohrung Ф D 1	sdurchmesser	Hinw Wellenbohrung Ф D2	sdurchmesser		1	Abmes m	_	1		Torsionssteifigkeit N·m/rad {kgf·m/rad}	Axiale Federkonstante		Hinweis S ssiger V	1	Hinweis 2) Gewicht	Hinweis 2)	Hinweis 2)
Wiodell-Ni.	N·m {kgf·m}	Drehzahl r/min	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	Bereich Wellenbohrung- sdurchmesser	Standard- Wellenbohrung- sdurchmesser	А	В	Е	F	Н	φΚ	Nur Scheibe	N/mm {k g f/mm}	Winkel- versatz deg	Parallel- versatz mm	Axialversatz mm	g	Trägheitsmoment kg·m²	{k g ·m²}
NES50S	5,0 {0,51}	18000	5-10	(unten).	6-16	(unten).	26,5	12,5	1,5	9,3	21,5	34	13000 {1300}	51 {5,2}	1,0	0,02	±0,40	41	6x10⁴	0,24
NES70S	7,0 {0,71}	18000	8-14		8-20		31,75	15	1,75	11,8	26	37	19000 {1900}	58 {5,9}	1,0	0,02	±0,45	55	10,1x10⁴	0,40
NES100S	10 {1,0}	15000	8-15	für Standard-Wellendurchmesser	8-22	Standard-Wellendurchmesser	34	15,7	2,6	11,5	29,5	44	30000	65 {6,6}	1,0	0,02	±0,55	91	22,9x10 ⁶	0,92
NES250S	25 {2,6}	10000	10-20	Wellend	10-25	Wellend	43	20	3	14,4	38	55	44000 {4500}	21 {2,1}	1,0	0,02	±0,70	180	70,7x10⁴	2,83
NES800S	80 {8,2}	10000	14-24	ndard-`	14-30	ndard-	51,7	23,5	4,7	16,9	46	64	78000 {8000}	52 {5,3}	1,0	0,02	±0,70	300	160 x10 ⁶	6,40
NES1300S	130 {13}	10000	19-32	für Sta	20-35	für	68,2	31,5	5,2	22,6	54	82	220000 {22000}	65 {6,6}	1,0	0,02	±0,90	630	556 x10°	22,2
NES2000S	200 {20,4}	9000	25-35	Tabelle	25-45	Tabelle	66,6	30,5	5,6	21,6	69	92	540000 {55100}	67 {6,8}	1,0	0,02	±0,70	790	887 x10°	35,5
NES3000S	300 {30,6}	8000	32-42	Siehe	35-50	Siehe	70	31,2	7,6	21	79	104	610000 {62200}	85 {8,6}	1,0	0,02	±0,90	1100	1600 x10°	64,0

Hinweise

- 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.
- 2. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
- 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
- 4. Die Spalten mit Werten in der nachstehenden Tabelle beziehen sich auf die Standard-Wellenbohrungsdurchmesser. Bei den Zahlen handelt es sich um die Übertragungsmomente.
- 5. Die empfohlene Toleranz für die Montage auf der Welle ist h7. Beachten Sie jedoch, dass die empfohlene Toleranz der Servomotorwellenbohrung bei einem Wellenbohrungsdurchmesser von 35 (+0,010 bis 0) beträgt.

Übertragungsmoment mit Standard-Wellendurchmesser und -Wellenbohrungsdurchmesser (N·m) Gerade Nabe (ϕ D2)

M. LIIN.	0.1 1 #0	Anzugsmoment										Stand	dard-	Well	enbo	hrun	gsdu	rchn	nesse	r (φ	D2)	(mm)								
Modell-Nr.	Schraubengroße	N·m {kgf·m}	6	6,35	7	8	9	9,525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50
NES50	M3	1,9{0,19}	5	5	5	5	5	5	5	5	5	5	5	5																	
NES70	M3	1,9{0,19}				7	7	7	7	7	7	7	7	7	7	7	7	7													
NES100	M4	3,8{0,39}				10	10	10	10	10	10	10	10	10	10	10	10	10	10												
NES250	M4	3,8{0,39}							25	25	25	25	25	25	25	25	25	25	25	25	25										
NES800	M6	12{1,22}										80	80	80	80	80	80	80	80	80	80	80	80								
NES1300	M6	12{1,22}																107	118	130	130	130	130	130	130						
NES2000	M8	30{3,1}																			200	200	200	200	200	200	200	200	200		
NES3000	M8	30{3,1}																							300	300	300	300	300	300	300



Serie NEF: Doppelte Kupplungen

Die doppelten Kupplungen der Serie NEF enthalten zwei Scheibensätze, von denen jeglicher Versatz ausgeglichen wird. Dieser Kupplungstyp ist für eine Vielzahl von Anwendungen

NEFO2W - N X N

Hinweis: Die Form des Distanzelements unterscheidet sich von der anderer Größen. Die Standardnabe und die Narbe mit größerem Durchmesser haben wir auf Lager. Für lange Naben setzen Sie sich bitte mit uns in Verbindung.

NEF-W

Doppelte Kupplung

Einheit: mm

	Zulässiges	Max.	Raue	Bereich Keilnut- Standard-	Max. Keiln	utwellendur	chmesser φ	Torsionssteifigkeit	Axiale				
Modell-Nr.	Drehmoment N·m{kgf·m}	Drehzahl U/min	Bohrung d	bohrungsdur- chmesser für Lagerbestände	Standardnabe	Lange Nabe	Nabe mit größ. Durchm.	N·m/rad{kgf·m/rad}	Federkonstante N/mm{kgf/mm}	PCD	A ₁	A ₂	A ₃
NEF02W	19,6{ 2}	20000	8	14-25	20	-	25	1,00×10 ⁴ { 0,10×10 ⁴ }	34,3{ 3,5}	44	63	_	_
NEF04W	39,2{ 4}	20000	8	11-22	23	23	29	1,18×10 ⁴ { 0,12×10 ⁴ }	20,6{ 2,1}	49,5	86,8	101,4	116
NEF10W	98 { 10}	20000	10	12-30	32	32	40	3,92×10 ⁴ { 0,4 ×10 ⁴ }	29,4{ 3 }	63	89,8	104,4	119
NEF18W	176 { 18}	18000	12	14-35	35	35	42	7,84×10 ⁴ { 0,8 ×10 ⁴ }	63,7{ 6,5}	71	104,4	120,7	137
NEF25W	245 { 25}	15000	15	18-42	42	42	48	12,7 ×10 ⁴ { 1,3 ×10 ⁴ }	78,4{ 8 }	82	120	136,5	153
NEF45W	441 { 45}	13000	15	25-50	50	50	60	21,6 ×10 ⁴ { 2,2 ×10 ⁴ }	109 {11,1}	96	144,2	163,1	182
NEF80W	784 { 80}	12000	15	30-60	60	60	70	39,2 ×10 ⁴ { 4,0 ×10 ⁴ }	153 {15,6}	111	164,6	186,8	209
NEF130W	1270 {130}	10000	25	35-70	74	74	80	73,5 × 10 ⁴ { 7,5 × 10 ⁴ }	177 {18,1}	134	192,4	220,2	248
NEF210W	2060 {210}	8000	25	-	83	83	90	11,3 ×10 ⁵ {11,5 ×10 ⁴ }	225 {23 }	153	216	272,5	329
NEF340W	3330 {340}	7500	45	-	95	95	110	16,2 × 10 ⁵ {16,5 × 10 ⁴ }	235 {24 }	172	249,4	313,2	377
NEF540W	5290 {540}	3400	50	-	109	109	120	21,4 ×10 ⁵ {21,8 ×10 ⁴ }	274 {28 }	198	286,8	337,9	389
NEF700W	6860 {700}	3100	50	-	118	118	130	29,1 × 10 ⁵ {29,7 × 10 ⁴ }	294 {30 }	218	337,2	385,6	434

Modell-Nr,	В	BL	E	F	Н	H∟	J	K	D _d	N	No	Ni	Т	T'	Zulä Winkel- versatz Grad	ssiger Versa Parallel- versatz mm	Axial- versatz	Gewicht kg	Trägheits kg·		GD² {kgf·cm²}
NEF02W	20	-	4,9	5,5	32	45	23	57	21	24	-	24	11	-	2	0,3	±1,6	0,45	1,6	6×10⁴	{ 6,64}
NEF04W	25,4	40	6,1	7,5	34	50	36	67,5	29	25	33	25	15,5	0,9	2	0,5	±1,6	0,95	5,3	×10-4	{ 21,4 }
NEF10W	25,4	40	6,6	7,5	46	66	39	81	37	37	46	37	16	1,4	2	0,55	±2,0	1,4	12	×10-4	{ 47 }
NEF18W	28,7	45	8,3	9	51	66	47	93	39	38	48	38	23	6,7	2	0,6	±2,4	2,3	25	×10-4	{ 100 }
NEF25W	33,5	50	11,2	9	61	78	53	104	45	47	58	47	21	4,5	2	0,7	±2,8	3,0	41	×10-4	{ 166 }
NEF45W	41,1	60	11,7	11,5	71	92	62	126	51	58	69	58	23	4,1	2	0,8	±3,2	5,4	110	×10-4	{ 440 }
NEF80W	47,8	70	11,7	14	84	104	69	143	61	71	81	71	29,5	7,3	2	0,9	±3,6	8,2	200	×10-4	{ 800 }
NEF130W	57,2	85	16,8	14	106	129	78	168	73	92	102	92	20	-7,8	2	1,0	±5,0	12,2	447	×10-4	{ 1787 }
NEF210W	63,5	120	17,0	16,5	118	147	89	194	84	103	114	103	32,5	-24	2	1,2	±5,4	18,9	931	×10-4	{ 3722 }
NEF340W	76,2	140	21,6	16,5	137	166	97	214	97	118	132	118	19,5	-44,3	2	1,3	±6,6	25,1	1478	×10-4	{ 5912 }
NEF540W	88,9	140	23,9	19	156	191	109	246	110	135	151	135	24,5	-15,6	2	1,4	±7,6	38,6	3014	×10-4	{12055 }
NEF700W	101,6	150	27,2	25,5	169	209	134	276	120	146	164	146	40	-8,4	2	1,8	±8,0	60	5972	×10-4	{23889 }

Hinweise 1. Zu den Abmessungen für Naben mit größerem Durchmesser und für lange Naben siehe S. 12. Bei der langen Nabe ist die Gesamtlänge größer, weil das Maß "B" größer ist.

2. Alle vorrätigen Modelle besitzen Vorbohrungen.

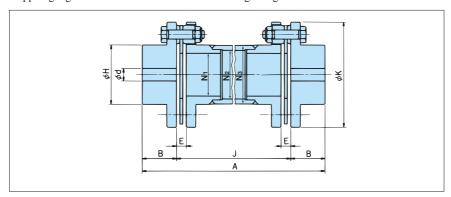
- Die Modelle NEF04W bis NEF130W wurden mit Wellenbohrungen in das Lager aufgenommen, die im vorstehenden Bereich des Standardbohrungsdurchmessers für Lagerbestände liegen (neuer JIS-Keil, Standardtyp).
- 3. Die maximale Drehzahl ist von der Übertragungsleistung der Kupplung abhängig

Eine Auswuchtung wurde nicht vorgenommen

- 4. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Bohrungsdurchmesser (Keilnut). Bei der Nabe mit größerem Durchmesser und bei der langen Nabe sind die nachstehend genannten Werte zu addieren.
- 5. Distanzelemente mit einer vom Standardmaß abweichenden Länge können angefertigt werden. Zu Details zur langen doppelten Kupplung siehe S. 22.
- 6. Der zulässige Axialversatz basiert auf der Annahme, dass der Winkelversatz "0" ist.
- 7. Überprüfen Sie den Keiloberflächendruck entsprechend Ihren Betriebsbedingungen (siehe S. 23). Beim Nabenmaterial handelt es sich um S45C.

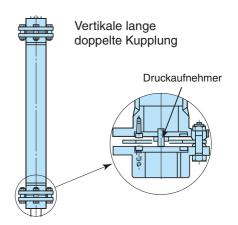
Referenznummernsystem (Beispiel) **NEF18W - N30J X K40E**

- *1: Kleineren Bohrungsdurchmesser zuerst angeben.
- *2: Raue Bohrung (Symbol "R") zuerst angeben.


Erhöhung von Gewicht, Trägheitsmoment und GD2 bei Naben mit größerem Durchmesser und langen Naben

	Nal	be mit gr	öß, Durc	chm,		Lang	e Nabe	
Modell-Nr.	Gewicht kg	Trägheits kg·		GD ² {kgf·cm ² }	Gewicht kg	Trägheit:	smoment m ²	GD ² {kgf·cm ² }
NEF02W	0,027	0,18	3×10 ⁻⁴	{ 0,74}	-	-	-	-
NEF04W	0,046	0,34	4×10⁴	{ 1,35}	0,056	0,12	2×10-4	{ 0,47}
NEF10W	0,15	1,3	×10 ⁻⁴	{ 5,18}	0,20	0,77	7×10 ⁻⁴	{ 3,08}
NEF18W	0,042	1,1	×10 ⁻⁴	{ 4,19}	0,14	0,67	7×10 ⁻⁴	{ 2,69}
NEF25W	0,13	3,0	×10 ⁻⁴	{ 11,3 }	0,20	1,3	×10 ⁻⁴	{ 5,41}
NEF45W	0,14	5,8	×10 ⁻⁴	{ 23,2 }	0,30	2,8	×10 ⁻⁴	{ 11,2 }
NEF80W	0,16	11	×10 ⁻⁴	{ 42,6 }	0,47	6,4	×10 ⁻⁴	{ 25,6 }
NEF130W	0,67	36	×10 ⁻⁴	{ 144 }	0,99	20	×10 ⁻⁴	{ 82,1 }
NEF210W	1,09	73	×10 ⁻⁴	{ 289 }	2,45	64	×10 ⁻⁴	{254 }
NEF340W	0,90	118	×10 ⁻⁴	{ 473 }	3,85	132	×10 ⁻⁴	{533 }
NEF540W	2,31	273	×10 ⁻⁴	{1089 }	3,91	178	×10 ⁻⁴	{710 }
NEF700W	2,91	431	×10 ⁻⁴	{1724 }	4,41	236	×10 ⁻⁴	{929 }

Lange doppelte Kupplung


Die lange doppelte Kupplung der Serie NEF ermöglicht die Verwendung einer schwimmenden Welle, wenn zwischen den Geräten ein gewisser Abstand besteht. Je nach Länge des Distanzelements kann die lange doppelte Kupplung auch in hohem Maße Exzentrizität ausgleichen. Diese Kupplung eignet sich für den Zentralantrieb von Kegelradgetrieben.

Berechnung der Torsionssteifigkeit von vertikalen langen doppelten Kupplungen

Überschreitet das Maß "J" für die einzelnen Kupplungsgrößen den in der nachstehenden Tabelle genannten Wert, wenn eine lange doppelte Kupplung vertikal eingebaut wird, muss, wie rechts gezeigt, ein Druckaufnehmer eingesetzt werden. Einheit: mm

2 2	1	2			
Modell-Nr.	Мав "Ј"	Modell-Nr.	Мав "Ј"	Modell-Nr.	Мав "Ј"
NEF04W	319	NEF130W	1910	NEH14W	1767
NEF10W	408	NEF210W	1924	NEH20W	1277
NEF18W	1171	NEF340W	2143	NEH30W	1747
NEF25W	1429	NEF540W	1542	NEH41W	1355
NEF45W	1386	NEF700W	1463		
NEF80W	1505	NEH09W	1153		

Formel für die Berechnung der Torsionssteifigkeit von vertikalen langen doppelten Kupplungen

Verwenden Sie die folgende Formel, um die Torsionssteifigkeit von vertikalen langen doppelten Kupplungen zu berechnen.

T × 10 ⁴	N·m/rad
$\overline{(J-J_1)\cdot K_1+K_2}$	Einheit: N·m/rad {kgf·m/rad}

		<u> </u>	
Modell-Nr.	Jı	K ₁	K ₂
NEF04W	63	0,0949	32,0
NEF10W	64	0,0857	22,2
NEF18W	74	0,1152	22,5
NEF25W	89,4	0,0856	19,2
NEF45W	105,6	0,0656	20,0
NEF80W	119	0,0579	20,0
NEF130W	148	0,0436	1 <i>7</i> ,3
NEF210W	161	0,0413	18,3
NEF340W	195,6	0,0434	20,6
NEF540W	225,6	0,0276	49,5
NEF700W	257,6	0,0286	47,1
NEH09W	258	0,0360	1 <i>7</i> ,0
NEH14W	292	0,0560	16,3
NEH20W	330	0,0374	15,4
NEH30W	373	0,0374	14,3
NEH41W	390	0,0354	15,8

J: Das in der externen Zeichnung angegebene Maß "J" (Abstand zwischen den Stirnflächen der Naben) in mm

Setzen Sie die in der vorstehenden Tabelle für J1, K1 und K2 angegebenen Konstanten ein.

Berechnungsformeln für ungefähres Gewicht der langen doppelten Kupplung/Trägheitsmoment und GD²

	- 1-1-	J	J				
	Gewich	ıt			Trägheitsm	ioment, GD ²	
Modell-Nr.	W ₁	W ₂	Jı	G ₁	d ₁	G ₂	d ₂
NEF04W	0,02	1,2	6,3	23	8,8	6	2,19
NEF10W	0,03	1,5	6,4	48	15,3	12	3,83
NEF18W	0,03	2,7	7,4	105	18,6	26	4,65
NEF25W	0,04	3,5	8,9	1 <i>7</i> 3	28,2	43	7,05
NEF45W	0,06	6,3	10,6	459	41,1	115	10,28
NEF80W	0,09	9,6	11,9	936	56,5	234	14,13
NEF130W	0,12	15,4	14,8	1948	94,3	487	23,59
NEF210W	0,16	22,5	16,1	4006	119,2	1001	29,79
NEF340W	0,19	29,9	19,6	6475	159,1	1619	39,78
NEF540W	0,36	46,1	22,6	13185	208,4	3246	52,09
NEF700W	0,38	69,5	25,8	25423	241,9	6356	60,47
NEH09W	0,44	64,1	25,8	22311	217,5	5578	54,38
NEH14W	0,44	72,4	29,2	2511 <i>7</i>	217,5	6279	54,38
NEH20W	0,65	110,7	33	49157	311,0	12289	77,74
NEH30W	0,75	150,9	37,3	85693	407,5	21423	101,87
NEH41W	0,95	197,9	39	132760	461,2	33190	115,3

Verwenden Sie die folgende Formel, um das Gewicht der langen doppelten Kupplung (bei maximalem Bohrungsdurchmesser) zu berechnen. Einheit: kg

Gewicht =
$$W_1 (J - J_1) + W_2$$

J: Maß "J" (Abstand zwischen den Stirnflächen der Naben) in mm Setzen Sie die in der vorstehenden Tabelle für J1, W1, W2, d1, d2, G1 und G2 angegebenen Konstanten ein.

Verwenden Sie die folgenden Formeln, um das Trägheitsmoment und GD2 (bei maximalem Bohrungsdurchmesser) zu berechnen

$$GD^2 = W_1 \times d_1 (J - J_1) + G_1$$

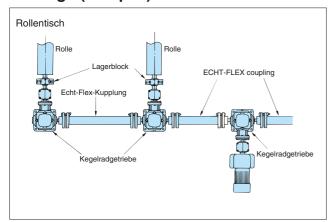
Einheit: kgf·cm2

Trägheitsmoment = $W_1 \times d_2 (J - J_1) + G_2$

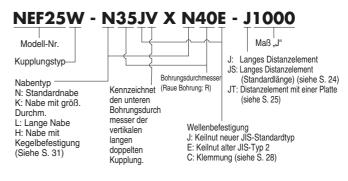
Einheit: kg·cm2

T: Das in der Übertragungsleistungstabelle angegebene zulässige Drehmoment in N·m{kgf·m}

^{*} Diese Formel gilt für Fälle, in denen das Maß "J" über "J1" liegt (Einheit: cm).


Einheit: mm

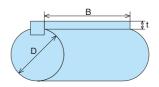
	т	Zulässiges	Raue	V											Zulä	ssiger Ve	rsatz
Modell-Nr,	Typ (Anzahl Schrauben)			Max, Bohrungsdurchm, (Keilnut)	В	D _d	Е	Н	K	Nı	N ₂	Nз	A	J	Winkelversatz $\theta(\operatorname{Grad})$	Axialversatz	Parallelversatz E
NEF 04W	4	39,2{ 4}	8	23	25,4	29	6,1	34	67,5	1 <i>7</i>	27	32			2	±1,6	
NEF 10W	4	98 { 10}	10	32	25,4	3 <i>7</i>	6,6	46	81	26	36	42			2	±2,0	
NEF 18W	4	176 { 18}	12	35	28,7	39	8,3	51	93	30	40	46			2	±2,4	
NEF 25W	4	245 { 25}	15	42	33,5	45	11,2	61	104	38	50	56			2	±2,8	
NEF 45W	4	441 { 45}	15	50	41,1	51	11,7	71	126	48	60	68		(0009	2	±3,2	
NEF 80W	4	784 { 80}	15	60	47,8	61	11,7	84	143	61	70	80			2	±3,6	
NEF130W	4	1270 { 130}	25	74	57,2	<i>7</i> 3	16,8	106	168	76	92	102		Erforderliche Länge (Max,	2	±5,0	
NEF210W	4	2060 { 210}	25	83	63,5	84	17	118	194	88	103	115		nge (2	±5,4	
NEF340W	4	3330 { 340}	45	95	76,2	97	21,6	137	214	106	120	132		e Lär	2	±6,6	
NEF540W	4	5290 { 540}	50	109	88,9	110	23,9	156	246	125	134	154		rlich	2	±7,6	θ
NEF700W	4	6860 { 700}	70	118	101,6	120	27,2	169	276	136	145,2	165,2		orde	2	±8,0	– α
NEH 09W	6	8820 { 900}	70	111	110	144	19	161	276	127	135	159	2B + J	Erf	1,4	±3,2	×
NEH 14W	8	13700 { 1400}	70	111	127	155	19	161	276	127	135	159			1	±2,1	I – E)
NEH 20W	8	19600 { 2000}	75	133	146	1 <i>7</i> 8	19	193	308	150	160,7	190,7			1	±2,4	
NEH 30W	8	29400 { 3000}	75	152	165	201	21,5	218	346	1 <i>75</i>	186,3	216,3			1	±2,8	
NEH 41W	8	40200 { 4100}	120	165	171	218	24	240	375	187	196	232			1	±2,8	
NEH 55W	8	53900 { 5500}	130	18 <i>7</i>	225	252	29,5	272	445	207	227,4	267,4			1	±3,6	
NEH 70W	8	68600 { 7000}	150	205	247	275	31,3	297	470	209	230	280		nge	1	±3,8	
NEH 90W	8	88200 { 9000}	150	231	278	304	32,0	334	511	247	273,9	323,9		che Lä1 4000)	1	±4,3	
NEH110W	8	108000 {11000}	190	254	305	343	32,5	364	556	277	305,6	355,6		rlich ×, 40	1	±4,8	
NEH135W	8	132000 {13500}	190	263	317	350	34,0	382	587	304	331	381		Erforderliche Länge (Max, 4000)	1	±5,0	
NEH150W	8	147000 {15000}	210	275	331	368	34,5	399	629	304	331	381		En	1	±5,6	
NEH180W	8	176400 {18000}	210	289	347	380	35,5	419	654	319	344,6	406,4			1	±5,7	


- Hinweise 1. Alle Größen werden nach Kundenwunsch angefertigt.
 - 2. Geben Sie bei der Bestellung das Maß "J" an. Wenden Sie sich an uns.
 - 3. Wird eine lange doppelte Kupplung mit hoher Drehzahl verwendet oder ist das Maß "J" extrem groß, kann eine Auswuchtung oder die Überprüfung der kritischen Drehzahl erforderlich sein. Siehe S. 9.

 - Wenden Sie sich an uns, wenn Sie eine lange doppelte Kupplung vertikal montieren wollen.
 Bei den Power-Lock-Kupplungen Modell NEF10W, 18W und 25W erfolgt die Feststellung durch die quadratische Nabe.
 - 6. Überprüfen Sie anhand der nachstehenden Beschreibung den Keiloberflächendruck für Ihre Betriebsbedingungen. Beim Nabenmaterial handelt es sich um S45C.

Montage (Beispiel)

Referenznummernsystem (Beispiel)



- *1: Kleineren Bohrungsdurchmesser zuerst angeben.
- *2: Raue Bohrung (Symbol "R") zuerst angeben.

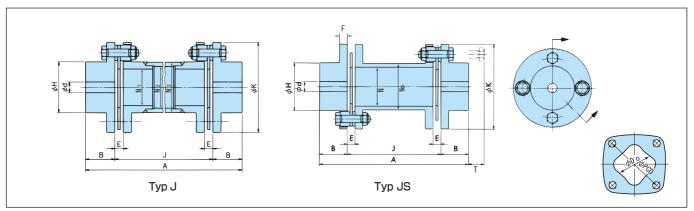
*Berechnung des [Referenz]-Keiloberflächendrucks

$$P = \frac{2000 \times T}{D \times t \times B} (N/mm^2)$$

(T = Betriebsdrehmoment (N·m), D = Bohrungsdurchmesser (mm), t = Keilhöhe (mm), B = Effektive Keillänge (mm))

Vorrätige lange doppelte Kupplungen

Lange Distanzelemente mit speziellen Abmessungen sind immer vorrätig und können kurzfristig geliefert werden.


Typ JS ist entsprechend G6,3/1800 U/min ausgewuchtet.

Liste der vorrätigen Modelle

Modell-Nr.						"J	": Abstan	d zwisch	en Naben	stirnfläch	en					
wiodeii-ivi.	100	127	140	180	200	250	300	350	400	450	500	600	700	800	900	1000
NEF04W					•	•	•	•	•	•	•	•	•	•	•	•
NEF10W	0		0		•	•	•	•	•	•	•	•	•	•	•	•
NEF18W	0		0		•	•	•	•	•	•	•	•	•	•	•	•
NEF25W	0	0	0		•	•	•	•	•	•	•	•	•	•	•	•
NEF45W	0	0	0	0	0	0										
NEF80W		0	0	0	0	0										
NEF130W		0	0	0	0	0										
NEF210W			0	0	0											
NEF340W				0	0											

○: Typ JS •: Typ J

Lange doppelte Kupplung konstanter Größe

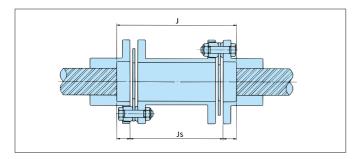
Maßtabelle

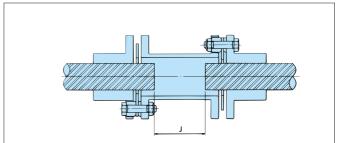
Modell-Nr.	Тур	J	Untere Bohrung d	Max, Wellenbohrungs- durchmesser (Keilnut)	А	В	D _D	Е	F	Н	K	N	N ₀	N ₁	N ₂	N ₃	Т	PCD
NEF04W	J	200,250,300,350, 400,450,500,600, 700,800,900,1000	8	23		25,4	29	6,1	7,5	34	67,5	-	-	17	27	32	15,5	49,5
NEF10W	JS	100,140 200,250,300,350, 400,450,500,600, 700,800,900,1000	10	32		25,4	37	6,6	7,5	46	81	3 <i>7</i>	46	26	36	42	16	63
NEF18W	JS	100,140 200,250,300,350, 400,450,500,600, 700,800,900,1000	12	35		28,7	39	8,3	9	51	93	38 -	48	30	40	46	23	71
NEF25W	JS	100,127,140 200,250,300,350, 400,450,500,600, 700,800,900,1000	15	42	2B+J	33,5	45	11,2	9	61	104	47 -	58	38	50	56	21	82
NEF45W	JS	100,127,140,180, 200,250	15	50		41,1	51	11,7	11,5	71	126	58	69	-	-	-	23	96
NEF80W	JS	127,140,180,200, 250	15	60		47,8	61	11,7	14	84	143	71	81	_	_	-	29,5	111
NEF130W	JS	127,140,180,200, 250	25	74		57,2	73	16,8	14	106	168	92	102	-	-	-	20	134
NEF210W	JS	140,180,200	25	83		63,5	84	17	16,5	118	194	103	114	-	_	-	32,5	153
NEF340W	JS	180,200	45	95		76,2	97	21,6	16,5	137	214	118	132	_	_	-	19,5	172

Verwendung der vorrätigen langen doppelten Kupplungen

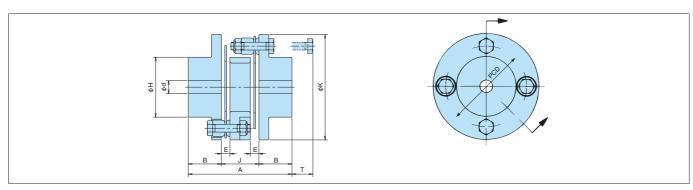
Folgende Methoden sind verfügbar, wenn die vorrätigen langen doppelten Kupplungen nicht genau passen.

① Erforderliches langes Distanzelement geringfügig länger als vorrätiges Produkt


Verwenden Sie auf beiden Seiten die lange Nabe.


② Erforderliches langes Distanzelement geringfügig kürzer als vorrätiges Produkt

Verlängern Sie beide Wellen von den Naben.


Der Bohrungsdurchmesser der Scheibe kann an den maximalen Wellendurchmesser sowohl der Standard- als auch der langen Nabe angepasst werden.

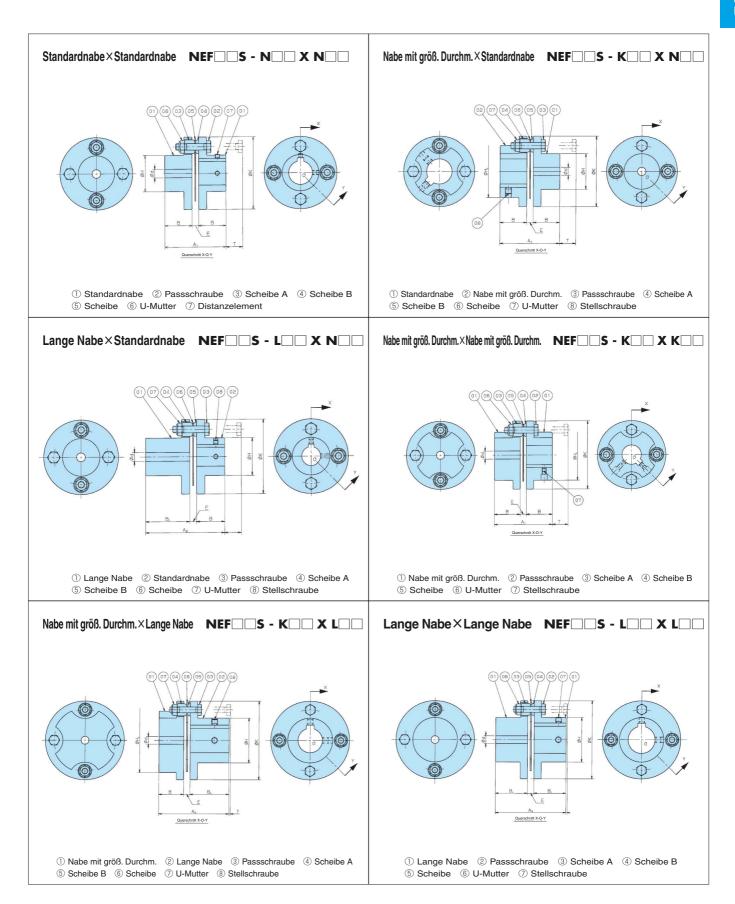
Doppelte Kupplung mit einer Platte

Die doppelte Kupplung der Serie NEF mit einer Platte verringert den Abstand zwischen den Stirnflächen der Naben (Maß "J") und eignet sich für den Fall, dass der Abstand zwischen den Wellenenden gering ist oder die Gesamtlänge verringert werden muss.

Einheit: mm Max Zulässiges Drehmoment Raue Modell-Nr В Ε Н Κ Т **PCD** Α J Bohrungsdurchr $N \cdot m\{kgf \cdot m\}$ Bohrung d (Keilnut) NEF04W 39.2 { 49.5 79 25,4 34 28.2 67,5 15,5 4} 8 6,1 10 79.6 25,4 NEF10W 98 10 32 63 6,6 46 28,8 81 16 NEF18W 176 18} 12 35 71 94,3 28,7 8,3 51 36,9 93 23 NEF25W 245 25 15 42 82 107,2 33,5 11,2 61 40,2 104 21 NEF45W 441 45 15 50 96 128,5 41,1 11,7 71 46,3 126 23 **NEF80W** 784 80 15 60 111 148,9 47,8 11,7 84 53,3 143 29,5 57,2 NEF130W 1270 {130} 25 74 134 174 16,8 106 59,6 168 20 {210 25 83 153 197,5 17 118 70,5 194 32.5 NEF210W 2060 63,5 228,8 76,2 45 95 172 21,6 137 214 NEF340W 3330 {340] 76,4 19,5 5290 50 109 198 88,9 23,9 156 88 246 NEF540W {540 265,8 24.5 NEF700W 101,6 50 118 309,2 169 6860 {700} 218 27,2 106 276 40

Referenznummernsystem (Beispiel)

^{*1:} Kleineren Bohrungsdurchmesser zuerst angeben.


^{*2:} Raue Bohrung (Symbol "R") zuerst angeben.

Serie NEF: Einfache Kupplungen

Einfache Kupplungen des Typs NEF besitzen einen Scheibensatz, von dem nur Winkelexzentrizität ausgeglichen wird. Da diese Ausführung keinen Parallelversatz ausgleichen kann, wird sie nur für Anwendungen empfohlen, die eine Präzisionszentrierung des Servomotors für NC-Bearbeitungszentren, NC-Holzbearbeitungsmaschinen usw. ermöglichen.

Erfolgt eine generelle Zentrierung, wird eine doppelte Kupplung empfohlen.

Einfach Einheit: mm

	Zulässiges	May Drobach	Raue	Bereich	Keilnutw	Max, ellendurch	ımesser φ	- Torsionssteifigkeit	Axiale Feder-		
Modell-Nr.	Drehmoment N·m{kgf·m}	U/min	Bohrung d	Bereich Standardbohrungsdurchmesser für Lagerbestände	Standardnabe	Lange Nabe	Nabe mit größ, Durchm,	N·m/rad{kgf·m/rad}	konstante N/mm{kgf/mm}	A ₁	A ₂
NEF02S	19,6{ 2}	20000	8	14 ~ 25	20	_	25	1,96×10 ⁴ { 0,2 ×10 ⁴ }	68,6{ 7,0}	44,9	_
NEF04S	39,2 { 4}	20000	8	11 ~ 22	23	23	29	2,45 × 10 ⁴ { 0,25 × 10 ⁴ }	40,2{ 4,1}	56,9	71,5
NEF10S	98 { 10}	20000	10	12 ~ 30	32	32	40	8,82×10 ⁴ { 0,9 ×10 ⁴ }	58,8{ 6 }	57,4	72
NEF18S	176 { 18}	18000	12	14 ~ 35	35	35	42	15,7 × 10 ⁴ { 1,6 × 10 ⁴ }	127 {13 }	65,7	82
NEF25S	245 { 25}	15000	15	18 ~ 42	42	42	48	25,5 × 10 ⁴ { 2,6 × 10 ⁴ }	157 {16 }	78,2	94,7
NEF45S	441 { 45}	13000	15	25 ~ 50	50	50	60	44,1 ×10 ⁴ { 4,5 ×10 ⁴ }	219 {22,3}	93,9	112,8
NEF80S	784 { 80}	12000	15	30 ~ 60	60	60	70	78,4 × 10 ⁴ { 8 × 10 ⁴ }	307 {31,3}	107,3	129,5
NEF130S	1270 {130}	10000	25	35 ~ 70	74	74	80	14,7 × 10 ⁵ {15 × 10 ⁴ }	355 {36,2}	131,2	159
NEF210S	2060 {210}	8000	25	_	83	83	90	22,5 × 10 ⁵ {23 × 10 ⁴ }	441 {45 }	144	200,5
NEF340S	3330 {340}	7500	45	_	95	95	110	32,3 × 10 ⁵ {33 × 10 ⁴ }	470 {48 }	174	237,8
NEF540S	5290 {540}	3400	50	-	109	109	120	43,1 × 10 ⁵ {44 × 10 ⁴ }	549 {56 }	201,7	252,8
NEF700S	6860 {700}	3100	50	-	118	118	130	58,8 × 10 ⁵ {60 × 10 ⁴ }	588 {60 }	230,4	278,8

									Zulässi	ger Versatz			
Modell-Nr.	A ₃	В	BL	Е	Н	H∟	K	T	Winkel- versatz Gra d	Axialversatz (Hinweis)	Gewicht kg	Trägheitsmoment kg·m²	GD ² {kgf·cm ² }
NEF02S	-	20	=	4,9	32	45	57	11	1	±0,8	0,33	1,23 × 10⁴	{ 4,9}
NEF04S	86,1	25,4	40	6,1	34	50	67,5	15,5	1	±0,8	0,6	2 × 10 ⁻⁴	{ 8 }
NEF10S	86,6	25,4	40	6,6	46	66	81	16	1	±1,0	0,8	6 × 10 ⁻⁴	{ 25 }
NEF18S	98,3	28,7	45	8,3	51	66	93	23	1	±1,2	1,3	13 × 10 ⁻⁴	{ 53 }
NEF25S	111,2	33,5	50	11,2	61	78	104	21	1	±1,4	1,8	22 × 10 ⁻⁴	{ 89 }
NEF45S	131,7	41,1	60	11,7	71	92	126	23	1	±1,6	4,3	56 × 10⁴	{ 224 }
NEF80S	151,7	47,8	70	11,7	84	104	143	29,5	1	±1,8	6,9	110 × 10 ⁻⁴	{ 440 }
NEF130S	186,8	57,2	85	16,8	106	129	168	20	1	±2,5	11,5	270 × 10 ⁻⁴	{ 1080 }
NEF210S	257	63,5	120	17,0	118	147	194	32,5	1	±2,7	16,4	520 × 10 ⁻⁴	{ 2080 }
NEF340S	301,6	76,2	140	21,6	137	166	214	19,5	1	±3,3	28,0	880 × 10 ⁻⁴	{ 3520 }
NEF540S	303,9	88,9	140	23,9	156	191	246	24,5	1	±3,8	33	1750 × 10⁴	{ 7000 }
NEF700S	327,2	101,6	150	27,2	169	209	276	40	1	±4,0	37	3250 × 10⁴	{13000 }

Hinweise 1. Zu den Abmessungen für Naben mit größerem Durchmesser und für lange Naben siehe S. 12.

Bei der langen Nabe ist die Gesamtlänge größer, weil das Maß "B" größer ist.

2. Alle vorrätigen Modelle besitzen Vorbohrungen.

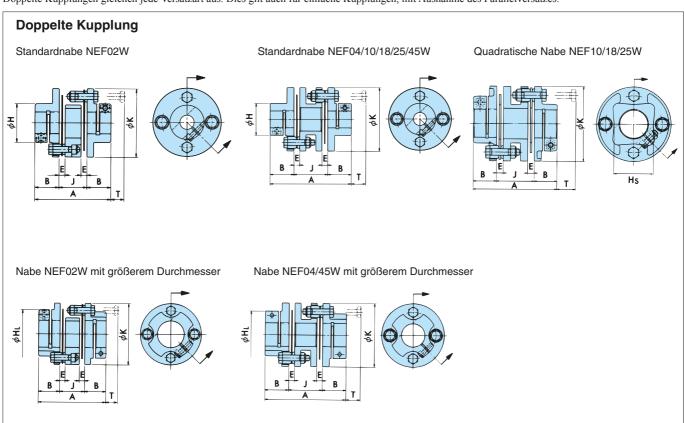
Die Modelle NEF04W bis NEF130W wurden mit Wellenbohrungen in das Lager aufgenommen, die im vorstehenden Bereich des Standardbohrungsdurchmessers für Lagerbestände liegen (neuer JIS-Keil, Standardtyp).

3. Die maximale Drehzahl ist von der Übertragungsleistung der Kupplung abhängig. Eine Auswuchtung wurde nicht vorgenommen

- 4. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Bohrungsdurchmesser (Keilnut). Bei der Nabe mit größerem Durchmesser und bei der langen Nabe sind die nachstehend genannten Werte zu addieren.
- 5. Der zulässige Axialversatz basiert auf der Annahme, dass der Winkelversatz "0" ist.
- 6. Überprüfen Sie den Keiloberflächendruck entsprechend Ihren Betriebsbedingungen (siehe S. 23). Beim Nabenmaterial handelt es sich um S45C.

Referenznummernsystem (Beispiel)

- H: Nabe mit Kegelbefestigung (Siehe S. 31) *1: Kleineren Bohrungsdurchmesser zuerst angeben. *2: Raue Bohrung (Symbol "R") zuerst angeben.


NEF-KLEMMUNG

NEF-Klemmung: Doppelte Kupplungen

Bei der NEF-Klemmung entsteht durch Festziehen je einer Schraube in den Naben Reibungsschluss mit der Welle.

Im Vergleich zur Power-Lock-Methode (siehe S. 26), bei der ebenfalls der Reibungsschluss genutzt wird, können diese Kupplungen das Axialmaß verringern, so dass weniger Platz für die Montage erforderlich ist.

Doppelte Kupplungen gleichen jede Versatzart aus. Dies gilt auch für einfache Kupplungen, mit Ausnahme des Parallelversatzes.

Doppelte Kupplung

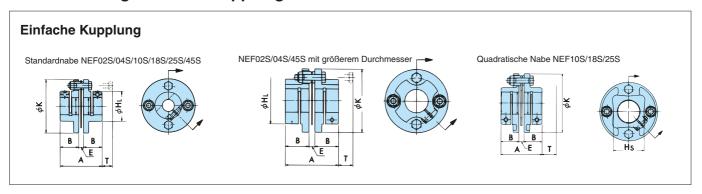
Einheit: mm

Modell-Nr.	Zulässiges Drehmoment N·m{kgf·m}	Max, Drehzahl U/min	Standardbohrungsdurchmesser für Lagerbestände	Bohrungsdurchmesser	Torsionssteifigkeit N·m/rad{kgf·m/rad}	Axiale Federkonstante N/mm{kgf/mm}	А	В
NEF02W	19,6{ 2}	20000	(10), (12), (15), (18), 19, 20, 22, 24, 25	8 ~ 25	1,00×10 ⁴ {0,10×10 ⁴ }	34,3 { 3,5}	63,0	20
NEF04W	39,2{ 4}	20000	②, ④, ⑤, ⑥, ⑦, 19, 20, 22, 24, 25	10 ~ 26	1,18×10 ⁴ {0,12×10 ⁴ }	20,6 { 2,1}	86,8	25,4
NEF10W	98 {10}	20000	(5, 18, 20, 24, 25, 28, 30, 35	10 ~ 35	3,92×10 ⁴ {0,4 ×10 ⁴ }	29,4 { 3 }	89,8	25,4
NEF18W	1 <i>7</i> 6 {18}	18000	9, 22, 25, 28, 30, 32, 35	14 ~ 35	7,84×10 ⁴ {0,8 ×10 ⁴ }	63,7 { 6,5}	104,4	28,7
NEF25W	245 {25}	15000	25, 30, 32, 35, 38, 40, 42	25 ~ 42	12,7 ×10 ⁴ {1,3 ×10 ⁴ }	78,4 { 8 }	120	33,5
NEF45W	441 {45}	13000	30, 38, 40, 42, 45, 50, 55	25 ~ 55	21,6 × 10 ⁴ {2,2 × 10 ⁴ }	109 {11,1}	144,2	41,1

									Gewicht	Trägheitsmoment	GD ²	Zul	lässiger V	ersatz
Modell-Nr.	E	Н	H∟	Hs	J	K	U	T	kg	kg·cm²	{kgf·cm²}	Winkel- versatz Grad	Parallel- versatz	Axialversatz
NEF02W	4,9	32	45	_	23	57	-	11	0,45(0,46)	1,68(1,90)	6,72(7,61)	2	0,3	±1,6
NEF04W	6,1	34	50	_	36	67,5	_	15,5	1,28(1,29)	5,2 (5,7)	20,9 (22,7)	2	0,5	±1,6
NEF10W	6,6	46	-	47	39	81	66	16	1,52(1,35)	11,7 (11,0)	46,7 (44,0)	2	0,55	±2,0
NEF18W	8,3	51	-	49	47	93	68	23	2,45(2,24)	24,8 (23,6)	99,1 (94,3)	2	0,6	±2,4
NEF25W	11,2	61	-	60	53	104	78,3	19	3,3 (3,0)	40,8 (38,5)	163 (154)	2	0,7	±2,8
NEF45W	11,7	71	92	-	62	126	_	23	6,9 (7,0)	95,8 (104)	383 (416)	2	0,8	±3,2

Hinweise 1. Die maximale Drehzahl ist von der Übertragungsleistung der Kupplung abhängig.

Eine Auswuchtung wurde nicht vorgenommen


4. Der zulässige Axialversatz basiert auf der Annahme, dass der Winkelversatz "0" ist.

^{2.} Die in Kreisen angegebenen Standardbohrungsdurchmesser für Lagerbestände beziehen sich auf Standardnaben, die Durchmesser in Kästchen auf die quadratische Nabe und die nicht gekennzeichneten Werte auf Naben mit größerem Durchmesser.

Die Werte für Gewicht, Trägheitsmoment und GD¹ beziehen sich auf den maximalen Bohrungsdurchmesser der runden Nabe. Die in Klammern angegebenen Werte für NEF02/04/45 gelten für die Nabe mit größerem Durchmesser. Die in Klammern angegebenen Werte für NEF10/18/15 beziehen sich auf die quadratische Nabe.

^{5.} Bei Kupplungen mit quadratischen Naben verhindert eine U-Mutter, dass sich die Klemmschraube löst. Bei anderen Ausführungen wird eine NYLOCK-Schraube verwendet.

NEF-Klemmung: Einfache Kupplungen

Einfache Kupplung Einheit: mm

Modell-Nr.	Zulässiges Drehmoment N·m{kgf·m}	Max, Drehzahl U/min	Standardbohrungsdurchmesser für Lagerbestände	Bohrungsdurchmesser	Torsionssteifigkeit N·m/rad{kgf·m/rad}	Axiale Federkonstante N/mm{kgf/mm}	А	В
NEF02S	19,6{ 2}	20000	(10), (12), (15), (18), 19, 20, 22, 24, 25	8 ~ 25	1,96×10 ⁴ {0,2 ×10 ⁴ }	68,6{ 7,0}	44,9	20
NEF04S	39,2{ 4}	20000	②, ④, ⑤, ⑥, ⑦, 19, 20, 22, 24, 25	10 ~ 26	2,45×10 ⁴ {0,25×10 ⁴ }	40,2{ 4,1}	56,9	25,4
NEF10S	98 {10}	20000	(5, (8, 20, 22, 24, 25, 28, 30, 35	10 ~ 35	8,82×10 ⁴ {0,9 ×10 ⁴ }	58,8{ 6 }	57,4	25,4
NEF18S	176 {18}	18000	9, 22, 25, 28, 30, 32, 35	14 ~ 35	15,7 × 10 ⁴ {1,6 × 10 ⁴ }	127 {13 }	65,7	28,7
NEF25S	245 {25}	15000	25, 30, 32, 35, 38, 40, 42	25 ~ 42	25,5 × 10 ⁴ {2,6 × 10 ⁴ }	157 {16 }	78,2	33,5
NEF45S	441 {45}	13000	30, 38, 40, 42, 45, 50, 55	25 ~ 55	44,1 × 10 ⁴ {4,5 × 10 ⁴ }	219 {22,3}	93,9	41,1

								Gewicht	Trägheitsmoment	GD ²	Zulässig	er Versatz
Modell-Nr.	E	Н	HL	Hs	K	U	T	kg	kg·cm²	{kgf·cm²}	Winkelversatz Grad	Axialversatz
NEF02S	4,9	32	45	-	57	-	11	0,33(0,39)	1,23(1,56)	4,9 (6,24)	1	±0,8
NEF04S	6,1	34	50	-	67,5	-	15,5	0,78(0,79)	2,78(3,23)	11,1 (12,9)	1	±0,8
NEF10S	6,6	46	-	47	81	66	16	0,92(0,80)	6,43(5,85)	25,7 (23,4)	1	±1,0
NEF18S	8,3	51	-	49	93	68	23	1,45(1,24)	13,5 (12,2)	54,1 (48,8)	1	±1,2
NEF25S	11,2	61	-	60	104	78,3	19	2,1 (1,8)	23 (20,9)	92 (83,4)	1	±1,4
NEF45S	11,7	71	92	-	126	-	23	4,6 (4,7)	57,5 (65,8)	230 (263)	1	±1,6

Hinweise 1. Die maximale Drehzahl ist von der Übertragungsleistung der Kupplung abhängig.

Eine Auswuchtung wurde nicht vorgenommen.

- 2. Die in Kreisen angegebenen Standardbohrungsdurchmesser für Lagerbestände beziehen sich auf Standardnaben, die Durchmesser in Kästchen auf die quadratische Nabe und die nicht gekennzeichneten Werte auf Naben mit größerem Durchmesser.
- Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Bohrungsdurchmesser der runden Nabe. Die in Klammern angegebenen Werte für NEF02/04/45 gelten für die Nabe mit größerem Durchmesser. Die in Klammern angegebenen Werte für NEF10/18/15 beziehen sich auf die quadratische Nabe.
 Der zulässige Axialversatz basiert auf der Annahme, dass der Winkelversatz "0" ist.
- 5. Bei Kupplungen mit quadratischen Naben verhindert eine U-Mutter, dass sich die Klemmschraube löst. Bei anderen Ausführungen wird eine NYLOCK-Schraube verwendet.

Referenznummernsystem (Beispiel)

- *1: Kleineren Bohrungsdurchmesser zuerst angeben. *2: Raue Bohrung (Symbol "R") zuerst angeben.

NEF-KLEMMUNG

NEF-Klemmung

Klemmmoment

Zur Befestigung auf einer Welle muss die Klemmschraube mit einem Drehmomentschlüssel mit dem nachstehend angegebenen korrekten Drehmoment angezogen werden. Je nach Schraubengröße und Bohrungsdurchmesser kann das Klemmmoment geringer sein als das zulässige Drehmoment der Kupplung. In diesem Fall entspricht das Klemmmoment dem Übertragungsmoment der Kupplung. Gehen Sie daher bei der Auswahl des Drehmoments umsichtig vor.

Klemmwellenbohrungsdurchmesser und Drehmoment

Modell-Nr.	Bohrungsdurchmesser φ mm	10	11		12	14	15	16	17		18	19	20	22	2	24	25	28	30	0	32	35
	Schraubengröße	M4	M4		۸4	M4	M4	M4	M4	1	M4	M4	M4	M	4	M4	M4					
NEF02	Anzugsmoment N·m {kgf·m}	4,02 {0,41	1 '	1 -	,02 ,41}	4,02 {0,41}	4,02 {0,41}	4,02 {0,41			4,02 0,41}	4,02 {0,41}	4,02 {0,41	1 -		1,02),41}	4,02 {0,41}					
	Übertragungsmoment N·m {kgf·m}	18,6 {1,90	19, {2,0		9,6 ,00}	19,6 {2,00}	19,6 {2,00}	19,6 {2,00	19,0		19,6 2,00}	19,6 {2,00}	19,6 {2,00			19,6 2,00}	19,6 {2,00}	+				
	Schraubengröße			٨	۸4	M4	M4	M4	M4		M4	M4	M4	M	4	M4	M4					
NEF04	Anzugsmoment N·m {kgf·m}					4,02 (0,41)	4,02 {0,41}	4,02 {0,41			4,02 0,41}	4,02 {0,41}	4,02 {0,41	1 -		1,02),41}	4,02 {0,41}					
	Übertragungsmoment N·m {kgf·m}				7,6 ,8}	30,1 [3,07]	34,3 {3,5}	37,2 {3,8}			39,2 [4,0]	39,2 {4,0}	39,2 {4,0			39,2 4,0}	39,2 {4,0}					
	Schraubengröße						M6	M6	Mó	5	M6	M6	M6	M	6	M6	M6	M6	M	6	M6	M5
NEF10	Anzugsmoment N·m {kgf·m}						13 <i>,7</i> {1,40}	13 <i>,7</i> {1,40	13,2		1 <i>3,7</i> 1,40}	13 <i>,7</i> {1,40}	13,7 {1,40			3,7 ,40}	13 <i>,7</i> {1,40}	13,7 {1,40		•	13 <i>,7</i> 1,40}	8,33 {0,85}
	Übertragungsmoment N·m {kgf·m}						85 {8,68}	94 {9,60	98 {10,0		98 10,0}	98 {10,0}	98 {10,0	98 (10	-	98 0,0}	98 {10,0}	98 {10,0	98 (10)	-	98 10,0}	98 {10,0}
Modell-Nr.	Bohrungsdurchmesser ϕ mm	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55
	Schraubengröße	M6	M6	M6	M6	M6	M6	M6	M6	M6	M6	M6	M6	M6								
NEF18	Anzugsmoment N·m {kgf·m}	13,7 {1,40}	13,7 {1,40}	13,7 {1,40}	13,7	13 <i>,7</i> {1,40}	13,7 {1,40}			13,7 1,40}		13 <i>,</i> 7 } {1,40}	13,7 {1,40}	13,7 {1,40}								
	Übertragungsmoment N·m {kgf·m}	68 {6,97}	83 {8,45}	90 {9,18}	100 {10,2	109 {11,1}	113 {11,5}			143 14,6}	176 {18,0	176 {18,0}	176 {18,0}	176 {18,0}								
	Schraubengröße									M8	M8	M8	M8	M8	M6	M6	M6					
NEF25	Anzugsmoment N·m {kgf·m}									34,3 3,50]	1 '	34,3 {3,50}		34,3 {3,50}	13,7 {1,40	1 .	13,7 } {1,40}					
	Übertragungsmoment N·m {kgf·m}									245 25,0}	245 {25,0}	245 {25,0}	245 {25,0}	245 {25,0}	230 {25,0	239 {24,4	245 } {25,0}					
	Schraubengröße											M8	M8	M8	M8	M8	M8	M8	M8	M8	M8	M8
NEF45	Anzugsmoment N·m {kgf·m}											34,3 {3,50}	34,3 {3,50}	34,3 {3,50}	34,3 {3,50		34,3 } {3,50}	34,3 {3,50}	34,3 {3,50}	34,3 {3,50	1 '	
	Übertragungsmoment N∙m {kgf·m}											363 {37,0}	372 {38,0}	393 {40,1}	416 {42,4	1	440 } {44,9}	441 {45,0}	441 {45,0}	441 {45,0	1	441 {45,0}

Zahlen in Fettdruck beziehen sich auf vorrätige Produkte.

Empfohlene Wellenbohrungstoleranz der Klemmnabe = h7

* Hinweis: Für den Bohrungsdurchmesser 35 ist die empfohlene Wellenbohrungstoleranz (+0,010 bis 0) oder (+0,010 bis -0,015).

MERKMALE

ECHT-FLEX-Kupplung mit Kegelbefestigung

Kombination aus ECHT-Flex-Kupplung und Power-Lock

Bei der ECHT-Flex-Kupplung von Tsubaki handelt es sich um eine flexible Kupplung mit herausragenden Eigenschaften, die mit dem deutschen Wort *echt* benannt wurde. Die Kupplung zeichnet sich durch ihr hohes Drehmoment und die kompakte Bauweise aus; erreicht wird dies durch eine speziell entwickelte Nabe, die die Konizitätstechnologie unserer Power-Lock®-Serie nutzt.

Diese Kupplung erfüllt den zunehmenden Bedarf an Komponenten, die für Servoantriebe geeignet sind.

Modelle

1. Kompakt

Die speziell entwickelte konische Nabe verringert die Gesamtlänge um bis zu 37 Prozent.

2. Hohes Drehmoment

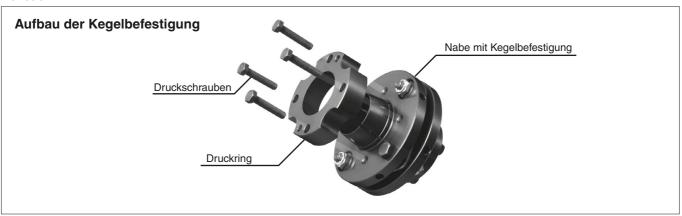
Die erhöhte Klemmkraft ist auf das zulässige Kupplungsmoment für alle Standard-Wellenbohrungsdurchmesser abgestimmt. Selbst im kleinen Durchmesserbereich treten keine Drehmomentverluste auf.

3. Großer Bohrungsbereich

Unser auf acht Produktausführungen und 708 Wellendurchmessern basierendes Standardsortiment bietet eine große Auswahl für vielfältige Einsatzzwecke.

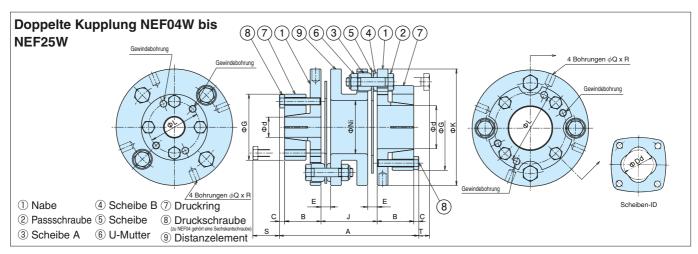
4. Austauschbar

Die Konstruktion des Scheibenklemmelements ist auf die verschiedenen Produkte abgestimmt, so dass es für Naben mit Keilnutwellenbohrung, für Klemmnaben und für lange Distanzelemente anderer Serien verwendet werden kann. Ein- und Ausbau können mühelos vom Kunden vorgenommen werden.


5. Hohe Torsionssteifigkeit

Die mit Hilfe der Finite-Elemente-Methode optimierte Scheibengeometrie bietet sowohl hohe Torsionssteifigkeit als auch Flexibilität.

6. Umweltfreundlich


Diese mit begrenzten Ressourcen und geringem Energieverbrauch hergestellten Kupplungen haben ein um 37 Prozent niedrigeres Gewicht und um 26 Prozent kleineres Trägheitsmoment. Alle Produkte erfüllen die Anforderungen der RoHS-Richtlinien und enthalten keine schädlichen Stoffe.

Aufbau

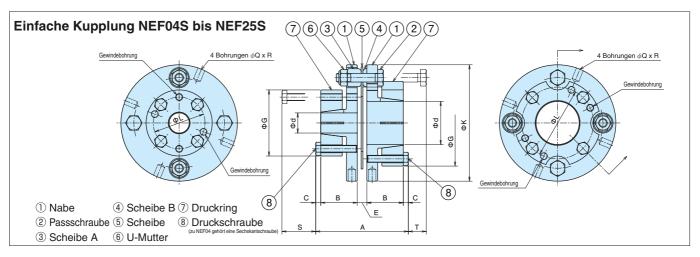
ÜBERTRAGUNGSLEISTUNG/ABMESSUNGEN NEF-KEGELBEFESTIGUNG

Serie NEF mit Kegelbefestigung Doppelte NEF-Kupplung: Nabe mit Kegelbefestigung

Finheit: mm

												Ellineit. mm
M LHN	Zulässiges Drehmoment	Max. Drehzahl	Min.	Max.	Torsionssteifigkeit	Axiale Federkonstante	Zu	lässiger Vers	atz	Gewicht	Trägheitsmoment	GD ²
Modell-Nr.	N·m{kgf·m}	U/min	Wellenbohrung- sdurchmesser	Wellenbohrung- sdurchmesser	N·m/rad {kgf·m/rad}	N/mm{kgf/mm}	Winkelversatz Grad	Parallelversatz	Axialversatz	kg	kg·cm²	{kgf·cm²}
NEF04W	39,2{4}	20000	10	22	1,18×10⁴ {0,12×10⁴}	20,6{2,1}	2	0,5	±1,6	1,0	5,36×10⁴	21
NEF10W	98{10}	20000	14	35	3,92x10⁴ {0,4x10⁴}	29,4{3,0}	2	0,55	±2,0	1,5	12,8x10⁴	51
NEF18W	1 <i>7</i> 6{18}	18000	15	38	7,84x10⁴ {0,8x10⁴}	63,7{6,5}	2	0,6	±2,4	2,3	26,0x10 ⁻⁴	104
NEF25W	245{25}	15000	24	50	12,7x10⁴ {1.3x10⁴}	78,4{8,0}	2	0,7	±2,8	2,9	42,4x10 ⁻⁴	170

Modell-Nr.	Α	В	К	Е	С	d	G	L	Ni	Dd	Q	R	J	S	Т
NEF04W	88	22	67,5	6,1	4	10·11·12·14·15·16 17·18·19·20·22	42	34	25	29	5,1	8	36	21	15,4
						14-15-16-17-18-19-20	46	36							
NEF10W	96,8	25,4	81	6,6	3,5	22·24·25·28	53	43	3 <i>7</i>	37	5,1	8	39	26	12,5
						30.32.35	60	50							
						15-16-17-18-19-20-22	49	37							
NEF18W	109	27	93	8,3	4	24.25.28.30	58	46	38	39	6,2	10	47	26	20,7
						32.35.38	66	54							
						24.25.28.30.32	60	48							
NEF25W	122	30,5	104	11,2	4	35.38.40.42	70	56	47	45	6,2	10	53	31	20
						45·48·50	<i>7</i> 8	66							


Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.

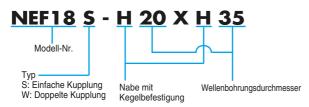
- 2. Die Werte für Gewicht, Trägheitsmoment und GD² beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
- Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
 Die Standard-Wellenbohrungsdurchmesser sind in der nachstehenden Tabelle angegeben.
- 5. Die empfohlene Toleranz für die Montage auf Wellen ist h7. Wellenbohrungen mit einem Durchmesser von 35 mm können auch Servomotorenwellen mit einer Toleranz von 0 bis +0,010
- 6. Diese Serie kann auch mit anderen Wellenklemmelementen, wie Keile und Klemmvorrichtungen, verwendet werden

Standard-Wellenbohrungsdurchmesser

		. 5																							
Größe	Druckschrau-	Anzugsmoment								St	andar	d-Wel	lenbo	hrung	sdurc	hmess	er (m	m)							
Grobe	bengröße	N·m{kgf·m}	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50
NEF04	M4	3,0{0,3}	•	•	•	•	•	•	•	•	•	•	•												
NEF10	M5	4,9{0,5}				•	•	•	•	•	•	•	•	•	•	•	•	•	•						
NEF18	M6	9,8{1,0}					•	•	•	•	•	•	•	•	•	•	•	•	•	•					
NEF25	M6	9,8{1,0}												•	•	•	•	•	•	•	•	•	•	•	•

Einfache NEF-Kupplung: Nabe mit Kegelbefestigung

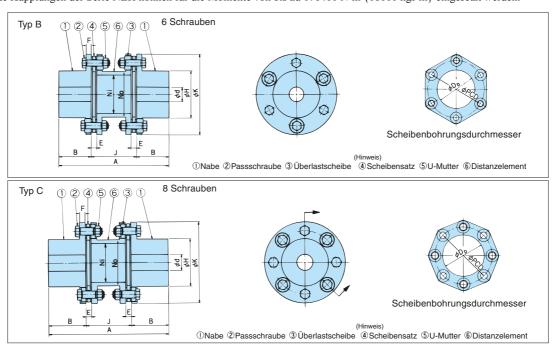
Einheit: mm


												Difficit.
Modell-Nr.	Zulässiges Drehmoment N·m{kgf·m}	Max. Drehzahl U/min	Min. Wellenbohrung- sdurchmesser	Max. Wellenbohrung- sdurchmesser	Torsionssteifigkeit N·m/rad {kgf·m/rad}	Axiale Federkonstante N/mm{kgf/mm}	Winkelversatz	Zulässiger Versatz Winkelversatz Parallelversatz Axialv		Gewicht kg	Trägheitsmoment kg·cm²	GD² {kgf·cm²}
							Grad					
NEF04S	39,2{4}	20000	10	22	2,45x10⁴ {0,25x10⁴}	40,2{4,1}	1	_	±0,8	0,6	2,94x10⁴	12
NEF10S	98{10}	20000	14	35	8,8×10 ⁴ {0,9×10 ⁴ }	58,8{6,0}	1	_	±1,0	0,9	7,30x10⁴	29
NEF18S	176{18}	18000	15	38	15,7x10⁴ {1,6x10⁴}	127{13}	1	_	±1,2	1,3	14,2x10 ⁻⁴	57
NEF25S	245{25}	15000	24	50	25,5x10⁴ {2,6x10⁴}	157{16}	1	_	±1,4	1,7	23,5×10⁴	94

Modell-Nr.	А	В	K	Е	С	d	G	L	Dd	Q	R	S	Т
NEF04S	58,1	22	67,5	6,1	4	10·11·12·14·15·16 17·18·19·20·22	42	34	29	5,1	8	21	15,4
						14-15-16-17-18-19-20	46	36					
NEF10S	64,4	25,4	81	6,6	3,5	22-24-25-28	53	43	37	5,1	8	26	12,5
						30.32.35	60	50					
						15-16-17-18-19-20-22	49	37					20,7
NEF18S	70,3	27	93	8,3	4	24.25.28.30	58	46	39	6,2	10	26	
						32.35.38	66	54					
						24-25-28-30-32	60	48					
NEF25S	80,2	30,5	104	11,2	4	35.38.40.42	70	56	45	6,2	10	31	20
						45.48.50	<i>7</i> 8	66					

Hinweise 1. Bei der maximalen Drehzahl ist die dynamische Auswuchtung nicht berücksichtigt.

- Die Werte für Gewicht, Trägheitsmoment und GD2 beziehen sich auf den maximalen Wellenbohrungsdurchmesser.
- 3. Jeder zulässige Versatz beruht auf der Annahme, dass die beiden anderen Versatzwerte 0 (null) sind.
- 4. Die Standard-Wellenbohrungsdurchmesser sind in der Tabelle auf der vorherigen Seite unten angegeben.
- 5. Die empfohlene Toleranz für die Montage auf Wellen ist h7. Wellenbohrungen mit einem Durchmesser von 35 mm können auch Servomotorenwellen mit einer Toleranz von 0 bis +0,010
- 6. Diese Serie kann auch mit anderen Wellenklemmelementen, wie Keile und Klemmvorrichtungen, verwendet werden.


Referenznummernsystem (Beispiel)

Serie NEH: Große doppelte Kupplungen

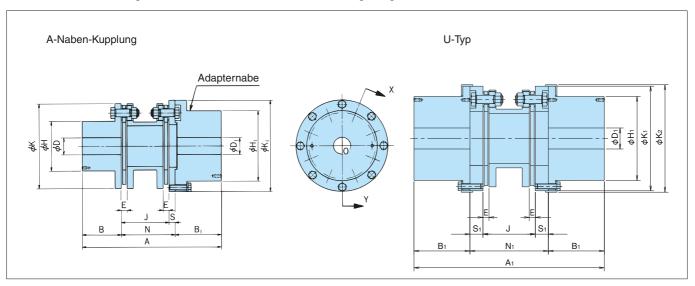
Große doppelte Kupplungen der Serie NEH können für die Momente von bis zu 176400 N·m {18000 kgf·m} eingesetzt werden.

Hinweis: Der Scheibensatz besteht aus Scheibe, Buchse und Bund (siehe S. 5).

Einheit: mm

Modell-Nr.	Typ (Anzahl Schrauben)	Zulässiges Drehmoment N·m{kgf·m}	Max. Drehzahl U/min	Raue Bohrung d	Max. Wellendurchmesser φ Keilnutbohrung	Torsionssteifigkeit N·m/rad{kgf·m/rad}	Axiale Federkonstante N/mm{kgf/mm}
NEH 09W	B (6)	8820{ 900}	5000	70	111	$51,9 \times 10^{5} \{ 5,3 \times 10^{5} \}$	627{ 64}
NEH 14W	C (8)	13700{ 1400}	4700	70	111	84,3×10 ⁵ { 8,6×10 ⁵ }	1380{141}
NEH 20W	C (8)	19600{ 2000}	4300	75	133	12,7×10 ⁶ { 1,3×10 ⁶ }	1370{140}
NEH 30W	C (8)	29400{ 3000}	3900	75	152	20,6×10 ⁶ { 2,1×10 ⁶ }	1700{183}
NEH 41W	C (8)	40200{ 4100}	3700	120	165	25,5×10 ⁶ { 2,6×10 ⁶ }	1880{192}
NEH 55W	C (8)	53900{ 5500}	3600	130	18 <i>7</i>	35,3×10 ⁶ { 3,6×10 ⁶ }	2087{213}
NEH 70W	C (8)	68600{ 7000}	3400	150	205	44,7×10°{ 4,6×10°}	1920{196}
NEH 90W	C (8)	88200{ 9000}	3100	150	231	58,2×10 ⁶ { 5,9×10 ⁶ }	2078{212}
NEH110W	C (8)	107800{11000}	2900	190	254	73,8×10 ⁶ { 7,5×10 ⁶ }	2038{208}
NEH135W	C (8)	132300{13500}	2700	190	263	94,6×10 ⁶ { 9,7×10 ⁶ }	2254{230}
NEH150W	C (8)	147000{15000}	2500	210	275	10,0×10 ⁷ {10,2×10 ⁶ }	2450{250}
NEH180W	C (8)	176400{18000}	2400	210	289	12,2×10°{12,4×10°}	2666{272}

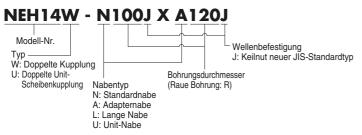
			В			Н	J	K	D _D			Zul	lässiger Vers	atz	Gewicht	Trägheitsmoment	GD ²
Modell-Nr.	PCD	A		Е	F					Zi	No	Winkelversatz Grad	Parallel- versatz	Axial- versatz	kg	kg·cm²	{kgf·cm²}
NEH 09W	215	375	110	19,0	18	161	155	276	144	138	156	1,4	1,1	±3,2	55	5000	{ 20000}
NEH 14W	215	409	127	19,0	20	161	155	276	155	132	156	1	1,1	±2,1	61	5500	{ 22000}
NEH 20W	247	463	146	19,0	23	193	171	308	178	160	186	1	1,3	±2,4	85	10300	{ 41000}
NEH 30W	279	517	165	21,5	25,5	218	187	346	201	180	210	1	1,4	±2,8	125	18500	{ 74000}
NEH 41W	304	566	171	24,0	28	240	224	375	218	198	230	1	1,7	±2,8	172	29300	{ 117000}
NEH 55W	355	720	225	29,5	35	272	270	445	252	228	260	1	2,0	±3,6	293	64800	{ 259000}
NEH 70W	381	768	247	31,3	35	297	274	470	275	249	285	1	2,1	±3,8	344	90800	{ 363000}
NEH 90W	419	843	278	32,0	39	334	287	511	304	280	320	1	2,2	±4,3	456	144000	{ 574000}
NEH110W	457	902	305	32,5	42	364	292	556	343	296	340	1	2,2	±4,8	575	215000	{ 859000}
NEH135W	482	945	317	34,0	47	382	311	587	350	312	360	1	2,4	±5,0	696	290000	{1159000}
NEH150W	508	1005	331	34,5	49	399	343	629	368	325	375	1	2,6	±5,6	826	390000	{1559000}
NEH180W	533	1050	347	35,5	53	419	356	654	380	340	390	1	2,8	±5,7	954	506000	{2023000}


- Hinweise 1. Alle Größen werden nach Kundenwunsch angefertigt.
 2. Die maximale Drehzahl ist von der Übertragungsleistung der Kupplung abhängig.
 Eine Auswuchtung wurde nicht vorgenommen. Wenden Sie sich an uns, um die Auswuchtung für hohe Drehzahlen anzupassen.
 - Die Werte für Gewicht, Trägheitsmoment und GD2 beziehen sich auf den maximalen Bohrungsdurchmesser (Keilnut).
 - 4. Distanzelemente mit einer vom Standardmaß abweichenden Länge können auch angefertigt werden. Zu Details zur langen doppelten Kupplung siehe S. 22.

 - Der zulässige Axialversatz basiert auf der Annahme, dass der Winkelversatz "0" ist.
 Überprüfen Sie den Keiloberflächendruck entsprechend Ihren Betriebsbedingungen (siehe S. 23). Beim Nabenmaterial handelt es sich um S45C.

Einseitige Adapternabenkupplung (A-Naben-Kupplung)/Doppelte Unit-Scheibenkupplung (U-Kupplung)

Die Kupplung der Serie NEH mit Adapternabe hat einen größeren Bohrungsdurchmesser als die Standardnabe. Bei der U-Kupplung kann das Distanzelement ein- und ausgebaut werden, ohne dass die Scheibenverbindung zerlegt werden muss.


Einheit: mm

Modell-Nr.	Zulässiges Drehmoment N·m{kgf·m}	Drenzani	Rana	Standardnabe Raue Max.		apternabe Max.	Torsionssteifigkeit N·m/rad {kgf·m/rad}	Axiale Federkonstante N/mm{kgf/mm}	А	Aı	В	B ₁	E	Н	Hı
	, (3	U/min	Bohrung	Wellendurchmesser ϕ D	Bohrung	Wellendurchmesser φD ₁	, , , , ,	, (3)							
NEH09W(U	8820 { 900}	5000	70	111	50	158	5,19 × 10 ⁶ {5,3 × 10 ⁵ }	627 { 64}	435	535	110	152	19	161	228
NEH14W(U	13700 {1400}	4700	70	111	55	158	8,43 × 10° {8,6 × 10°}	1380 {141}	452	531	127	150	19	161	228
NEH20W(U	19600 {2000}	4300	75	133	65	182	1,27 × 10° {1,3 × 10°}	1370 {140}	491	565	146	151	19	193	264
NEH30W(U	29400 {3000}	3900	75	152	75	206	2,06 × 10 ⁷ {2,1 × 10 ⁶ }	1790 {183}	577,5	680	165	200	21,5	218	300
NEH41W(U	40200 {4100}	3700	120	165	80	224	$2,55 \times 10^{7} \{2,6 \times 10^{6}\}$	1880 {192}	653	790	171	230	24	240	324

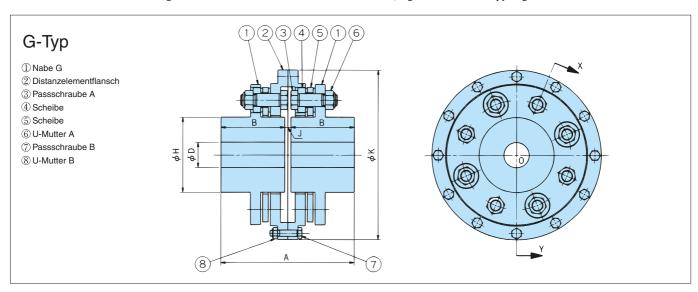
Modell-Nr.	J	K	K ₁	K ₂	N	N ₁	S	S ₁	Zulässiger Versat Winkel- Parallel-		z Axial-	Gewicht kg		Trägheitsmoment		GD ² {k g f·cm ² }	
									versatz Gra d	versatz	versatz	Α	U	Α	U	Α	U
NEH09W(U)	155	276	297	313	173	231	18	38	1,4	1,1	±3,2	81	108	0,85	1,2	{ 3,4}	{ 4,8}
NEH14W(U)	155	276	297	313	175	231	20	38	1	1,1	±2,1	88	115	0,93	1,3	{ 3,7}	{ 5,2}
NEH20W(U)	171	308	334	344	194	263	23	46	1	1,3	±2,4	120	155	1,68	2,33	{ 6,7}	{ 9,3}
NEH30W(U)	187	346	374	384	212,5	280	25,5	46,5	1	1,4	±2,8	1 <i>77</i>	230	3,05	4,23	{12,2}	{16,9}
NEH41W(U)	224	375	422	438	252	330	28	52	1	1,7	±2,8	248	325	5,05	7,2	{20,2}	{28,8}

Alle Größen werden nach Kundenwunsch angefertigt.
 Fragen Sie uns nach Zeichnungen, wenn Sie eine Bestellung vornehmen wollen.

Referenznummernsystem (Beispiel)

*1: Kleineren Bohrungsdurchmesser zuerst angeben.

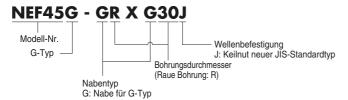
*2: Raue Bohrung (Symbol "R") zuerst angeben.


*3: U-Kupplungen den nicht mit Kupplungen mit Adapternabe (A-Kupplungen) kombiniert werden.

ÜBERTRAGUNGSLEISTUNG/ABMESSUNGEN

Serie NEF: Mit Zahnkupplung (G-Kupplung) kompatible Kupplungen

Aufgrund der Verringerung des Abstands zwischen den Stirnflächen der Naben (Maß "D") hat die G-Kupplung der Serie NEF-G dieselbe Gesamtlänge und Nabenlänge wie Standardzahnkupplungen Daher sind G-Kupplungen und Standardzahnkupplungen uneingeschränkt untereinander austauschbar. Da keine Schmierung erforderlich ist und keine Arbeitskosten anfallen, eignen sich die G-Kupplungen auch ideal für TPM.



Einheit: mm

	Zulässiges Drehmoment	Max.	Max.	···			Ents	sprechende Z	ahnkupplung		
Modell-Nr.	N·m{kgf·m}	Drehzahl U/min	Wellendurchmesser D	Α	В	Н	J	K	JIS- Modell	Max. Wellendurchmesser φ	Drehmoment N·m {kgf·m}
NEF 45G	441 { 45}	5000	32	88	40	47	8	161	100	25	196 { 20}
NEF 80G	784 { 80}	5000	40	98	45	57	8	184	112	32	392 { 40}
NEF130G	1270 { 130}	5000	48	108	50	69	8	207	125	40	784 { 80}
NEF210G	2060 { 210}	5000	55	134	63	80	8	245	140	50	1230 { 125}
NEF340G	3330 { 340}	5000	65	170	80	93	10	264	160	63	1760 { 180}
NEF540G	5290 { 540}	3400	75	190	90	106	10	306	180	71	2450 { 250}
NEF700G	6860 { 700}	3100	80	210	100	116	10	342	200	80	3480 { 355}
NEH 09G	8820 { 900}	3500	95	236	112	140	12	334	224	90	4900 { 500}
NEH 14G	13700 {1400}	3500	105	262	125	147	12	334	250	100	6960 { 710}
NEH 20G	19600 {2000}	3000	120	294	140	171	14	378	280	125	11000 {1120}
NEH 30G	29400 {3000}	2800	136	334	160	197	14	416	315	140	15700 {1600}
NEH 41G	40200 {4100}	2500	149	376	180	213	16	462	355	160	24500 {2500}

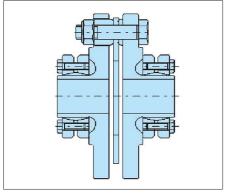
Hinweise 1. Alle Größen werden nach Kundenwunsch angefertigt.

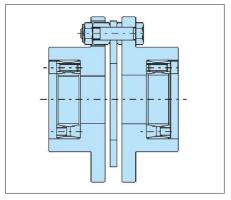
Referenznummernsystem (Beispiel)

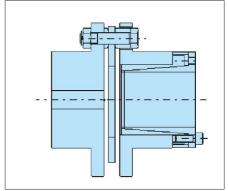
^{1.} And Grober werden hach Kundenwahen angeferingt.

2. Fragen Sie uns nach Zeichnungen, wenn Sie eine Bestellung vornehmen wollen. (Bei NEF45G/80G/130G/210G/540G/700G stehen die Passschrauben aus den Stirnflächen der Naben hervor.)

SONSTIGE KUPPLUNGSTYPEN

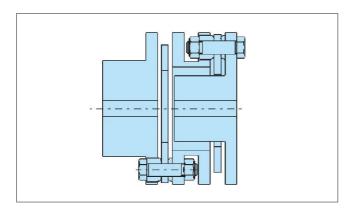

Umweltbeständig (Kupplung aus chemisch vernickeltem Stahl und Edelstahl)

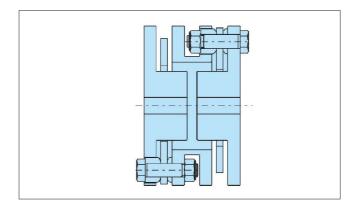

Die Scheibe dieser Kupplungen besteht aus Edelstahl. Andere Teile können zum Korrosionsschutz bei Bedarf chemisch vernickelt oder aus Edelstahl hergestellt werden. Fragen Sie uns nach Zeichnungen.


Verschiedene Power-Lock-Kupplungen

Bei Verwendung in Verbindung mit unterschiedlichen Power-Lock-Kupplungen für Wellenklemmung geeignet.

- ① Bei Power-Lock-Kupplungen der Serie SL kann ② Die Power-Lock-Kupplung der Serie AS kann die Klemmung von außerhalb der Nabe aus
 - das Axialmaß verringern.
- ③ Die Power-Lock-Kupplung der Serie TF kann Wellen mit größerem Durchmesser verbinden.

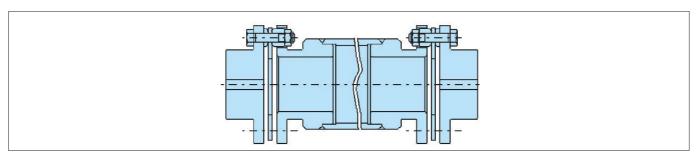



Neben den vorgenannten sind weitere Power-Lock-Kupplungen verfügbar. Fragen Sie uns nach Zeichnungen.

Kupplung mit einer bzw. zwei nach innen versetzten Naben

Doppelte Kupplungen werden empfohlen, wenn die Gesamtlänge der Kupplung kürzer sein soll.

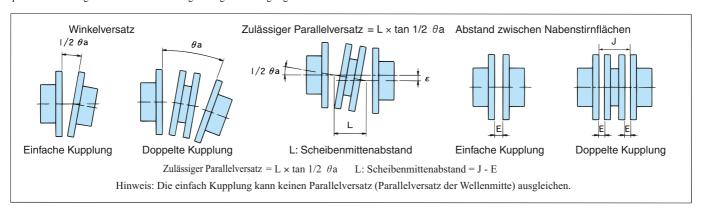
1 Kupplung mit einer nach innen versetzten Nabe Wird einen Nabe innen montiert, kann das Axialmaß verringert werden. ② Kupplung mit zwei nach innen versetzten Naben Werden beide Nabe innen montiert, kann das Axialmaß noch weiter verringert werden.



Lange doppelte Hochgeschwindigkeitskupplung

Wird eine lange doppelte Kupplung bei hohen Drehzahlen eingesetzt, muss in der Regel die kritische Drehzahl berücksichtigt werden, um zu vermeiden, dass ein Resonanzpunkt erreicht wird (siehe S. 9).

Um den kritischen Drehzahlbereich zu vermeiden, kann eine größere Kupplung ausgewählt werden. Stellt die Auswahl einer größeren Kupplung keine Alternative dar, können Kupplungen mit schwererem Distanzelement angefertigt werden, wie nachstehend gezeigt.



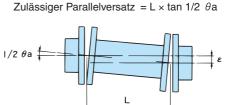
MONTAGE

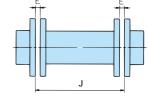
Zentrierung

(1) Einfache und doppelte Kupplungen

Je genauer die erste Zentrierung der Kupplung vorgenommen wird, um so weniger wird sie während des Betriebs belastet. Verschleiß des Wellenlagers, Vertiefungen in der Montagefläche und durch Temperaturen und Vibrationen geänderte Betriebsbedingungen können die Lebensdauer der Kupplung und Ihrer Anlage verkürzen. Führen Sie eine präzise Zentrierung durch und nehmen Sie regelmäßig Einstellungen gemäß dem nachstehenden Verfahren vor.

Der zulässige Winkelversatz, Parallelversatz und Abstand zwischen den Stirnflächen der Naben stehen in Wechselbeziehung zueinander. Wenn ein Wert größer wird, verringern sich die anderen. Diese Faktoren müssen daher zusammen berücksichtigt werden. Führen Sie die erste Zentrierung mit Sorgfalt durch, damit der nachstehende empfohlene Wert nicht überschritten wird.


Tabelle 1 Empfohlene Zentrierung (einfache Kupplung)


		Win	kelversatz	Parallelversatz	Versatz Abstand
	Modell-Nr.	$1/2 \theta$ a	Anzeige	ε (mm)	Nabenstirnflächen
		(Grad)	Vollausschlag mm	0 (11111)	E (mm)
	NEF 02	0,25°	0,25		4,9±0,25
	NEF 04	0,25°	0,29		6,1±0,25
bn.	NEF 10	0,25°	0,35	p.	6,6±0,25
Einfache Kupplung	NEF 18	0,25°	0,40	können nicht chen werden.	8,3±0,25
ppl	NEF 25	0,25°	0,45	we	11,2±0,25
Ku	NEF 45	0,25°	0,55	Sing	11,7±0,25
he	NEF 80	0,25°	0,62	Syd	11,7±0,25
fac	NEF 130	0,25°	0,73	* Fehler ausgeglie	16,8±0,25
Sin	NEF 210	0,25°	0,84	Fe	17,0±0,25
ш	NEF 340	0,25°	0,93	+≈ ਫ਼ੋ	21,6±0,25
	NEF 540	0,25°	1,07		23,9±0,25
	NEF 700	0,25°	1,20		27,2±0,25

^{*} Da die einfache Kupplung keinen Parallelversatz ausgleichen kann, muss dieser bei der Zentrierung auf maximal 0,02 mm eingestellt werden.

2 Lange doppelte Kupplung

E: Abstand zwischen Nabenstirnflächen J: Abstand zwischen Flanschstirnflächen Flansch-Haße

L: Scheibenmittenabstand = J - E

Empfohlene Zentrierung (doppelte Kupplung)

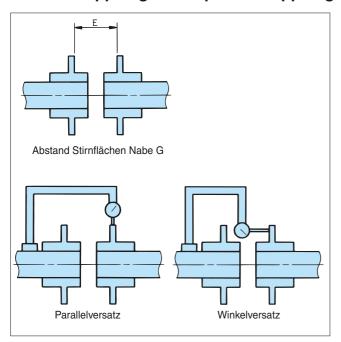
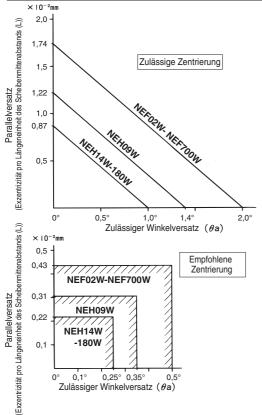
			kelversatz	Parallelversatz	Versatz Abstand		
	Modell-Nr.	θа	Anzeige	ε (mm)	Nabenstirnflächen		
		(Grad)	Vollausschlag mm		E (mm)		
	NEF 02 W	0,5°	0,50	0,075	4,9±0,25		
	NEF 04 W	0,5°	0,58	0,13	6,1±0,25		
	NEF 10 W	0,5°	0,71	0,14	6,6±0,25		
	NEF 18 W	0,5°	0,81	0,17	8,3±0,25		
	NEF 25 W	0,5°	0,91	0,18	11,2±0,25		
	NEF 45 W	0,5°	1,10	0,22	11,7±0,25		
	NEF 80 W	0,5°	1,25	0,25	11,7±0,25		
	NEF 130 W	0,5°	1,46	0,27	16,8±0,25		
	NEF 210 W	0,5°	1,69	0,31	17,0±0,25		
gun	NEF 340 W	0,5° 1,86 0,33		0,33	21,6±0,25		
ldd	NEF 540 W	0,5°	2,14	0,37	23,9±0,25		
Κu	NEF 700 W	0,5°	2,41	0,46	27,2±0,25		
Doppelte Kupplung	NEH 09 W	0,35°	1,68	0,30	19,0±0,25		
bbe	NEH 14 W	0,25°	1,20	0,30	19,0±0,25		
Dog	NEH 20 W	0,25°	1,34	0,33	19,0±0,25		
	NEH 30 W	0,25°	1,50	0,36	21,5±0,25		
	NEH 41 W	0,25°	1,64	0,43	24,0±0,25		
	NEH 55 W	0,25°	1,94	0,50	29,5±0,25		
	NEH 70 W	0,25°	2,05	0,51	31,3±0,25		
	NEH 90 W	0,25°	2,23	0,55	32,0±0,25		
	NEH 110 W	0,25°	2,43	0,55	32,5±0,25		
	NEH 135 W	0,25°	2,56	0,60	34,0±0,25		
	NEH 150 W	0,25°	2,74	0,65	34,5±0,25		
	NEH 180 W	0,25°	2,85	0,70	35,5±0,25		

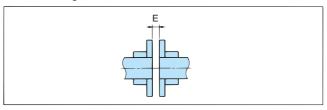
Tabelle 2 Empfohlene Zentrierung (lange doppelte Kupplungen)

	Win	kelversatz	Parallelversatz	Versatz Abstand		
Modell-Nr.	θ а	Anzeige	ε (mm)	Nabenstirnflächen		
	(Grad)	Vollausschlag mm		E (mm)		
NEF 04 W	0,5°	0,58	$L \times 0.43 \times 10^{-2}$	6,1±0,25		
NEF 10 W	0,5°	0,71	$L \times 0.43 \times 10^{-2}$	6,6±0,25		
NEF 18 W	0,5°	0,81	$L \times 0.43 \times 10^{-2}$	8,3±0,25		
NEF 25 W	0,5°	0,91	$L \times 0.43 \times 10^{-2}$	11,2±0,25		
NEF 45 W	0,5°	1,10	$L \times 0.43 \times 10^{-2}$	11,7±0,25		
NEF 80 W	0,5°	1,25	$L \times 0.43 \times 10^{-2}$	11,7±0,25		
NEF 130 W	0,5°	1,46	$L \times 0.43 \times 10^{-2}$	16,8±0,25		
NEF 210 W	0,5°	1,69	$L \times 0.43 \times 10^{-2}$	17,0±0,25		
NEF 340 W	0,5°	1,86	$L \times 0.43 \times 10^{-2}$	21,6±0,25		
NEF 540 W	0,5°	2,14	$L \times 0.43 \times 10^{-2}$	23,9±0,25		
NEF 700 W	0,5°	2,41	$L \times 0.43 \times 10^{-2}$	27,2±0,25		
NEH 09 W	0,35°	1,68	$L \times 0.31 \times 10^{-2}$	19,0±0,25		
NEH 14 W	0,25°	1,20	$L \times 0,22 \times 10^{-2}$	19,0±0,25		
NEH 20 W	0,25°	1,34	$L \times 0,22 \times 10^{-2}$	19,0±0,25		
NEH 30 W	0,25°	1,50	$L \times 0,22 \times 10^{-2}$	21,5±0,25		
NEH 41 W	0,25°	1,64	$L \times 0,22 \times 10^{-2}$	24,0±0,25		
NEH 55 W	0,25°	1,94	$L \times 0,22 \times 10^{-2}$	29,5±0,25		
NEH 70 W	0,25°	2,05	$L \times 0,22 \times 10^{-2}$	31,3±0,25		
NEH 90 W	0,25°	2,23	$L \times 0,22 \times 10^{-2}$	32,0±0,25		
NEH 110 W	0,25°	2,43	$L \times 0,22 \times 10^{-2}$	32,5±0,25		
NEH 135 W	0,25°	2,56	$L \times 0,22 \times 10^{-2}$	34,0±0,25		
NEH 150 W	0,25°	2,74	$L \times 0,22 \times 10^{-2}$	34,5±0,25		
NEH 180 W	0,25°	2,85	$L \times 0,22 \times 10^{-2}$	35,5±0,25		

MONTAGE

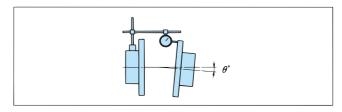
Mit Zahnkupplungen kompatible Kupplung

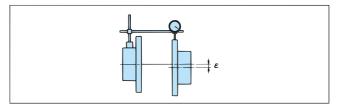




Tabelle 3 Empfohlene Zentrierung (mit Zahnkupplungen kompatible Kupplung)

•		• .		
	Win	kelversatz	Parallelversatz	Versatz Abstand
Modell-Nr.	θ \circ	Anzeige	ε (mm)	Nabenstirnflächen
	(Grad)	Vollausschlag mm	0 (11111)	E (mm)
NEF45G	0,5°	1,05	0,20	61,4±0,50
NEF80G	0,5°	1,20	0,23	68,4±0,50
NEF130G	0,5°	1,45	0,25	78,6±0,50
NEF210G	0,5°	1,65	0,30	88,0±0,50
NEF340G	0,5°	1,85	0,30	97,2±0,50
NEF540G	0,5°	2,15	0,38	112,8±0,50
NEF700G	0,5°	2,40	0,45	136,4±0,50
NEH09G	0,35°	1,68	0,25	109,0±0,50
NEH14G	0,25°	1,20	0,18	107,0±0,50
NEH20G	0,25°	1,35	0,20	121,6±0,50
NEH30G	0,25°	1,50	0,23	128,0±0,50
NEH41G	0.25°	1.63	0.25	1/3 0+0 50

Beziehung zwischen Parallelversatz und Winkelversatz für die doppelte Kupplung


1 Einstellung des Nabe-Nabe-Maßes "E"


Messen Sie sowohl bei einfachen als auch bei doppelten Kupplungen das Maß "E" an vier Stellen (in 90°-Winkeln) und stellen Sie die Nabenposition so ein, dass das Maß "E" im Durchschnitt maximal $\pm 0,25$ mm beträgt.

Werden sowohl auf der Antriebs- als auch auf der Abtriebsseite abgestufte Wellen verwendet, kann der Spielraum für Einstellungen begrenzt sein. Berücksichtigen Sie dies in diesem Fall im Voraus, damit das Maß "E" eingestellt werden kann.

2 Einstellung des Winkelversatzes (6°)

- a) Befestigen Sie eine Messuhr wie oben gezeigt an einer der Naben, drehen Sie die Nabe, bis die Messuhr den kleinsten Wert anzeigt und stellen Sie diesen auf "0".
- b) Drehen Sie die Nabe mit der Messuhr um 360° und lesen Sie den Wert für den Winkelversatz ab.
- c) Versetzen Sie die Ausrüstung mit einer Beilagscheibe, bis der von der Messuhr angezeigte Wert innerhalb des in Tabelle 1 genannten Bereichs für den empfohlenen Winkelversatz liegt.
- ③ Einstellung des Parallelversatzes " \(\mathcal{\varepsilon} \) " (mm)

- a) Befestigen Sie eine Messuhr wie oben gezeigt am Nabenflansch, drehen Sie die Nabe, bis die Messuhr den kleinsten Wert anzeigt und stellen Sie diesen auf "0".
- b) Drehen Sie die Nabe mit der Messuhr um 360° und lesen Sie den Wert für den Parallelversatz ab.
- c) Der von der Messuhr am Umfang des Nabenflansches angezeigte Wert kann an der Nabenbohrung deutlich schwanken. Der Grund hierfür ist der, dass der Flansch bei Anfertigung der Bohrung zum Umfang hin versetzt wird. Ignorieren Sie die an diesen Stellen von der Messuhr angezeigten Werte.
- d) Versetzen Sie die Ausrüstung mit einer Beilagscheibe, bis der von der Messuhr angezeigte Wert innerhalb des in Tabelle 1 genannten doppelten Bereichs für den empfohlenen Parallelversatz " & " liegt.
- e) Stellen Sie den Winkelversatz erneut ein, wenn die Ausrüstung zur Einstellung des Parallelversatzes versetzt wird.
- Wiederholen Sie die vorstehenden Einstellverfahren, bis alle Versatzwerte der Kupplung akzeptabel sind.
- (5) Ziehen Sie alle U-Muttern mit dem in Tabelle 4 genannten Drehmoment fest (S. 40). ECHT-FLEX-Kupplungen übertragen das Drehmoment über die Reibkraft, die zwischen der Scheibe und der Unterlegscheibe mittels der U-Mutter-Anzugskraft erzeugt wird. Beachten Sie unbedingt die in Tabelle 4 genannten Anzugsmomente (S. 40).

1. Passschrauben-Anzugsmoment

ECHT-FLEX-Kupplungen übertragen das Drehmoment über die Reibkraft zwischen der Passschraube und der U-Mutter. Ziehen Sie die Passschrauben und die U-Muttern mit dem angegebenen Drehmoment fest.

Kupplungen der Serie NES werden als komplette Baugruppen geliefert; lösen Sie in keinem Fall die Innensechskantschraube, mit der die Scheibe befestigt ist.

Tabelle 4 Serie NEF (außer G-Typ)

Modell-Nr.	Passschraube Anzugsmoment N·m{kgf·m}	Passschraubengröße
NEF 02	4,90{ 0,5 }	M5
NEF 04	8,82{ 0,9}	M6
NEF 10	8,82{ 0,9}	M6
NEF 18	21,6 { 2,2 }	M8
NEF 25	21,6 { 2,2 }	M8
NEF 45	41,2 { 4,2 }	M10
NEF 80	78,4 { 8,0 }	M12
NEF130	78,4 { 8,0 }	M12
NEF210	177 { 18,1 }	M16
NEF340	177 { 18,1 }	M16
NEF540	470 { 48,0 }	M20
NEF700	657 { 67,0 }	M24
NEH 09	470 { 48,0 }	M20
NEH 14	568 { 58,0 }	M22
NEH 20	784 { 80,0 }	M24
NEH 30	1170 {119,0}	M27
NEH 41	1590 {162,0}	M30
NEH 55	2250 {230 }	M36
NEH 70	2550 {260 }	M36
NEH 90	3230 {330 }	M39
NEH110	3920 {400 }	M42
NEH135	4900 {500 }	M45
NEH150	5490 {560 }	M48
NEH180	6860 {700 }	M52

Mit Zahnkupplungen kompatible Kupplung

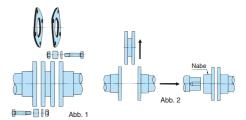
mit =ammapp.	angen kemp	ambie itappi	9	
Modell-Nr.	Passschraube (A) Anzugsmoment N·m{kgf·m}	Größe der Passschraube (A)	Passschraube (B) Anzugsmoment N·m{kgf·m}	Größe der Passschraube (B)
NEF 45G	41,2 { 4,2 }	M10	8,82{ 0,9}	M6
NEF 80G	78,4 { 8,0 }	M12	21,6 { 2,2}	M8
NEF130G	78,4 { 8,0 }	M12	21,6 { 2,2}	M8
NEF210G	177 { 18,1 }	M16	41,2 { 4,2}	M10
NEF340G	177 { 18,1 }	M16	41,2 { 4,2}	M10
NEF540G	470 { 48,0 }	M20	78,4 { 8,0}	M12
NEF700G	657 { 67,0 }	M24	78,4 { 8,0}	M12
NEH 09G	470 { 48,0 }	M20	78,4 { 8,0}	M12
NEH 14G	568 { 58,0 }	M22	78,4 { 8,0}	M12
NEH 20G	784 { 80,0 }	M24	177 { 18,1 }	M16
NEH 30G	1170 {119,0}	M27	177 { 18,1 }	M16
NEH 41G	1590 {162,0}	M30	470 { 48,0 }	M20

Passschrauben-Schlüsselweiten Ei												
Größe	M5	M6	M8	M10	M12	M16	M20	M22	M24	M27	M30	
S	8	10	13	17	19	24	30	32	36	41	46	

2. Festziehen der Passschraube

Achten Sie beim Festziehen der Passschrauben darauf, dass keine Axialkraft auf die Kupplungsnabe ausgeübt wird.

Wird eine Axialkraft auf die Kupplungsnabe ausgeübt, kann die Scheibe dauerhaft verzogen werden. Ziehen Sie die Passschrauben mit dem in der vorstehenden Tabelle angegebenen Drehmoment fest.


Die U-Mutter besteht aus Metall. Sie kann bis zu 20 Mal eingedreht und herausgedreht werden. Halten Sie eine Reservemutter bereit, wenn Sie die U-Mutter mehr als 20 Mal eindrehen und herausdrehen müssen.

3. Ausbau der Kupplung

Die doppelte Kupplung kann von der Welle gelöst werden, ohne dass die Antriebs- oder Abtriebskomponenten verfahren werden müssen. Dadurch wird die Zentrierung beim Einbau der Kupplung wesentlich vereinfacht.

<Ausbau>

- 1. Lösen Sie alle Passschrauben und entfernen Sie die Scheiben und Distanzelemente (Abb. 1).
- 2. Lösen Sie die Stellschraube, mit der die Nabe befestigt ist, und schieben Sie die Nabe herunter (Abb. 2).
- 3. Führen Sie zum Einbau der Kupplung die vorgenannten Schritte in umgekehrter Reihenfolge durch. Es wird empfohlen, nachdem beide Naben an der Welle montiert wurden, die Kupplung auf korrekte Zentrierung zu prüfen.

4. Überprüfung

Überprüfen Sie noch einmal den Winkelversatz und den Parallelversatz, nachdem die Anlage eine oder zwei Stunden in Betrieb gewesen ist. Ziehen Sie dabei die Schrauben und Muttern mit dem in der vorstehenden Tabelle angegebenen Drehmomenten fest.

Prüfen Sie nach einer Betriebszeit von sechs Monaten oder einem Jahr die U-Muttern auf festen Sitz. Es wird empfohlen, die Passschrauben und U-Muttern beim Einbau zu markieren, so dass sie später auf festen Sitz geprüft werden können. Überprüfen Sie auch die anderen Komponenten auf einwandfreien Zustand.

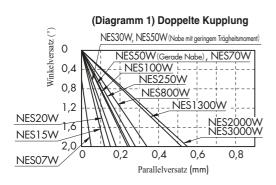
MONTAGE

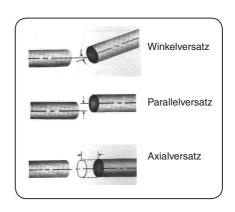
Einbau der Kupplungen der Serie NES

1. Einbau der Kupplung

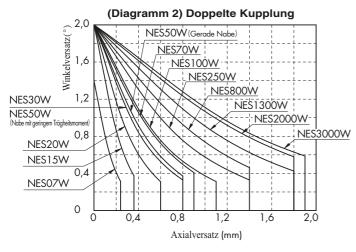
Lesen Sie die Betriebsanleitung sorgfältig durch, um sich mit dem korrekten Umgang mit den Kupplungen vertraut zu machen. Da die ECHT-FLEX-Kupplungen der Serie NES als komplette Baugruppen geliefert werden (vollständige Bohrung), können Sie direkt in Ihrer Anlage eingebaut werden. Montieren Sie die Kupplung gemäß den nachstehenden Schritten an der Welle.

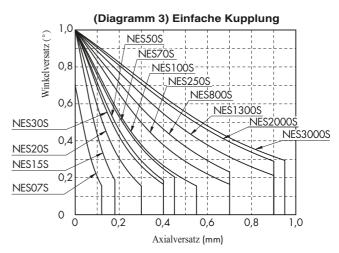
Üben Sie beim Montieren der Kupplung keine übermäßige Kraft auf sie aus und lassen Sie sie nicht fallen. Lösen Sie in keinem Fall die Innensechskantschraube, mit der die Scheibe befestigt ist.


2. Montieren der Kupplung an einer Welle


- ① Entfernen Sie mit einem Tuch Staub und Öl restlos von der Welle und von der Montagefläche der Kupplung.
- ② Führen Sie die Wellenzentrierung durch und montieren Sie die Kupplung an der Welle.

 Der zulässige Winkelversatz, Parallelversatz und Axialversatz stehen in Wechselbeziehung zueinander. Wenn ein Wert größer wird, verringern sich die anderen. Diese Faktoren müssen daher zusammen berücksichtigt werden. Führen Sie die Zentrierung gemäß der nachstehenden Anleitung durch.


<Verwendung einer doppelten Kupplung>


Rechnen Sie den Parallelversatz in einen Winkelversatz um (Diagramm 1).

Wenden Sie den Gesamtwert der Umrechnung und den Winkelversatz auf den in Diagramm 2 gezeigten Winkelversatz an. Korrigieren Sie die Zentrierung so, dass der Versatz innerhalb des für jede Größe angegebenen Bereichs liegt.

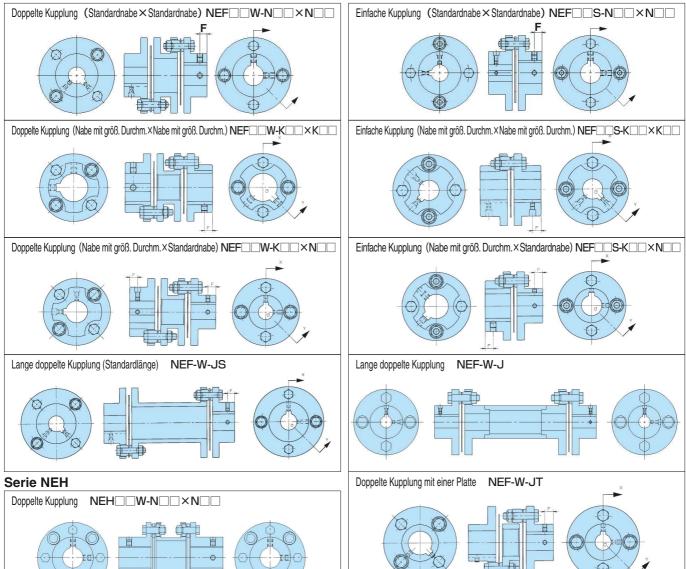
<Verwendung einer einfachen Kupplung>

Die einfache Kupplung kann Parallelversatz nur in sehr geringem Maße ausgleichen. Daher sollte mit der Zentrierung im Wesentlichen der Winkelversatz und der Axialversatz korrigiert werden.

Diagramm 3 zeigt die Wechselbeziehung zwischen dem zulässigen Winkelversatz und dem zulässigen Axialversatz der Kupplung.

Korrigieren Sie die Zentrierung so, dass der Versatz innerhalb des für jede Größe angegebenen Bereichs liegt.

- ③ Stellen Sie sicher, dass die montierte Kupplung bei gelöster Klemmschraube mit nur geringem Kraftaufwand in Drehrichtung und in Axialrichtung bewegt werden kann. Wiederholen Sie die in Schritt ② beschriebene Zentrierung, wenn dies nicht der Fall ist.
- 4 Ziehen Sie die Klemmschraube mit dem in Tabelle 5 genannten Drehmoment fest. Stecken Sie dann die Welle bis zur Stirnfläche der Klemmnabe ein.


Modell-Nr.	Klemmschraubengröße	Anzugsmoment N⋅m {kgf⋅m}
NES07	M2	0,50 { 0,05 }
NES15	M2	0,50 { 0,05 }
NES20	M2,5	1,0 { 0,10}
NES30	M2,5	1,0 { 0,10}
NES50	M3	1,9 { 0,19}
NES70	M3	1,9 { 0,19}
NES100	M4	3,8 { 0,39}
NES250	M4	3,8 { 0,39}
NES800	M6	12 { 1,22}
NES1300	M6	12 { 1,22}
NES2000	M8	30 { 3,1 }
NES3000	M8	30 {3,1}

BOHRUNGSSPEZIFIKATIONEN

Doppelte Kupplung

Einfache Kupplung

Serie NEF

[Allgemeine Angleichung der Keilnutwinkel]

Bei der Angleichung der Wellenbohrungen bei Tsubaki können die Keilnutwinkel in der rechten und der linken Nabe, wie oben gezeigt, falsch ausgerichtet sein.

Naben-Keilnutwinkel stimmen generell überein:

Serie NEH, lange doppelte Kupplung Serie NEF

Naben-Keilnutwinkel stimmen nicht überein:

einfache Kupplung Serie NEF, doppelte Kupplung Serie NEF, lange doppelte

Kupplung Serie NEF (Standardlänge), doppelte Kupplung mit einer Platte Serie NEF

Wenn die Keilnutwinkel genau übereinstimmen müssen, geben Sie bei der Bestellung bitte den "Typ mit übereinstimmendem Keilnutwinkel" an. Beim Typ mit übereinstimmendem Keilnutwinkel beträgt die maximale Winkeldifferenz ±2°. Ist bei der Übereinstimmung der Keilnutwinkel eine höhere Genauigkeit erforderlich, wird die Power-Lock-Kupplung empfohlen.

BOHRUNGSSPEZIFIKATIONEN

Maß "F" Einheit: mm

Modell-Nr.	NEF02	NEF04	NEF10	NEF18	NEF25	NEF45	NEF80	NEF130	NEF210	NEF340	NEF540	NEF700
Maß "F"	5	8	8	10	12	15	18	20	20	25	30	35

Stellschraubengröße

Einheit: mm

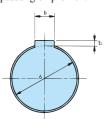
									Ellineit. Illiii			
	Standard-Wellenbohrungsdurchmesser											
Modell-Nr.	9-20	22	24-29	30	32-38	40	42-48	50	52			
NEF02	M4×4											
NEF04	M4×4	M4×4										
NEF10	M4×4	M6×6	M6×6	M4×4	M4×4							
NEF18	M4×4	M6×6	M6×6	M6×6	M4×4							
NEF25	M5×5	M5×5	M6×6	M6×6	M8×8	M6×6	*1					
NEF45	M5×5	M5×5	M6×6	M6×6	M8×8	M8×8	M8×8	M6×6				
NEF80	M6×6	M6×6	M6×6	M6×6	M8×8	M8×8	M10×10	M10×10	M10×10			
NEF130			M8×8	M8×8	M8×8	M8×8	M10×10	M10×10	M12×12			
NEF210			M10×10	M10×10	M10×10	M10×10	M10×10	M10×10	M12×12			
NEF340							M12×12	M12×12	M12×12			
NEF540									M12×12			
NEF700									M12×12			

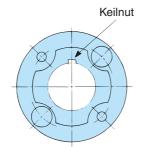
*1 ϕ 42 : M5 × 5, ϕ 43-48 : M8×8

Einheit: mm

		Standard-Wellenbohrungsdurchmesser											
Modell-Nr.	55-57	60	63-70	71-75	80	85-90	95-100	105-110	112-115				
NEF80	M8×8	M6×6											
NEF130	M12×12	M12×12	M12×12	M10×10									
NEF210	M12×12	M12×12	M16×16	M16×16	M12×12								
NEF340	M12×12	M12×12	M16×16	M16×16	M16×16	M16×16	M12×12						
NEF540	M12×12	M12×12	M16×16	M16×16	M16×16	M20×20	M20×20	M16×16					
NEF700	M12×12	M12×12	M16×16	M16×16	M16×16	M20×20	M20×20	M20×20	M16×16				

^{*} Für Stellschrauben sind an zwei Stellen Gewindebohrungen vorgesehen: an der Keilnut und um 90° im Uhrzeigersinn von der Bohrung an der Keilnut versetzt.


^{*} Für jede Wellenbohrung sind zwei Stellschrauben im Lieferumfang enthalten.


Bearbeitung der Wellenbohrung/Keilnutmaße

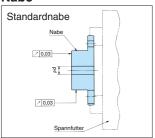
1. Toleranz für Welle und Bohrung

Für normale Zwecke wird die Übergangspassung empfohlen. Für hohe Drehzahlen, bei denen auf die dynamische Auswuchtung geachtet werden muss, wird eine Presspassung empfohlen.

Beim Naben mit größerem Durchmesser muss die Keilnut an der folgenden Position bearbeitet werden.

Keilnut-Maßtabelle Neue JIS (JIS B1301-1996)

Wellendurchmesser	Keilgröße	Keiln	Keilnuttiefe	
d	Welle × Höhe b × (h)	Welle t1	Nabe t2	
Über 8, bis 10 Über 10, bis 12 Über 12, bis 17 Über 17, bis 22	3× 3 4× 4 5× 5 6× 6	1,8 2,5 3,0 3,5	2,3	
Über 20, bis 25 Über 22, bis 30 Über 30, bis 38 Über 38, bis 44 Über 44, bis 50	(7×7) 8×7 10×8 12×8 14×9	4,0 4,0 5,0 5,0 5,5	3,3 3,3	
Über 50, bis 55 Über 50, bis 58 Über 58, bis 65 Über 65, bis 75 Über 75, bis 85	(15×10) 16×10 18×11 20×12 22×14	5,0 6,0 7,0 7,5 9,0	5,0 4,3 4,4 4,9 5,4	
Über 80, bis 90 Über 85, bis 95	(24×16) 25×14	8,0 9,0	8,0 5,4	
Über 95, bis 110 Über 110, bis 130 Über 125, bis 140 Über 130, bis 150 Über 140, bis 160 Über 150, bis 170 Über 160, bis 180 Über 170, bis 200 Über 200, bis 230	28×16 32×18 (35×22) 36×20 (38×24) 40×22 (42×26) 45×25 50×28	10,0 11,0 11,0 12,0 12,0 13,0 13,0 15,0 17,0	7,4 11,0 8,4 12,0	


Alte JIS (JIS B1301-1959)

			<u> </u>
Wallandurahmagaar	Sollwert Keilgröße	Keilnuttiefe	
Wellendurchmesser d	Welle × Höhe b × (t ₂ + t ₁)	Welle tı	Nabe t2
10 oder mehr, bis 13	4× 4	2,5	1,5
Über 13, bis 20	5× 5	3,0	2,0
Über 20, bis 30	7× 7	4,0	3,0
Über 30, bis 40	10× 8	4,5	3,5
Über 40, bis 50	12× 8	4,5	3,5
Über 50, bis 60 Über 60, bis 70 Über 70, bis 80 Über 80, bis 95	15×10 18×12 20×13 24×16	5 6 7 8	5 6 6 8
Über 95, bis 110	28×18	9	9
Über 110, bis 125	32×20	10	10
Über 125, bis 140	35×22	11	11
Über 140, bis 160	38×24	12	12
Über 160, bis 180	42×26	13	13
Über 180, bis 200 Über 200, bis 224	45×28 50×31,5	14 16	14 15,5

2. Zentrierung

Führen Sie vor der Bearbeitung der Wellenbohrungen wie nachstehend gezeigt die Zentrierung durch:

Nabe

Führen Sie bei der quadratischen Nabe für NEF10, 18 und 25 die Zentrierung am Flanschumfang durch. Der von der Messuhr angezeigte Wert kann an der Bohrung in der Nabe deutlich schwanken. Der Grund hierfür ist der, dass der Flansch bei Anfertigung der Bohrung zum Umfang hin versetzt wird. Ignorieren Sie die an diesen Stellen von der Messuhr angezeigten Werte.

Wellendurchmesser und empfohlene Wellenbohrungstoleranz

Wellendurchmesser		Bohrungsd	urchmesser
Größe	Toleranz	Übergangs- passung	Presspassung
12			
14			
16			
18			
19			
20	j6		
22			
24			M7
25			
28			
30			
32		H7	
35			
38			
40	k6		
42	KO		
45			
48			
50			N7
55			1 4/
56	m6		
60	1110		
62		1	l

Wellendurchmesser		Bohrungsd	urchmesser
Größe	Toleranz	Übergangs- passung	Presspassung
65			
70			
71			N7
75			
80			
85			
90			
95			
100			
110			
120	m6	H7	
125	""	11/	
130			
140			P7
150			
160			
170			
180			
190			
200			
210			
220			

Notizen

.....

Sicherheitshinweise

WARNUNG	Der Missbrauch des Produkts kann tödliche oder schwere Verletzungen zur Folge haben, wenn die Anweisungen unter dieser Überschrift nicht befolgt werden.		
ACHTUNG	Bei Missbrauch des Produkts kann es zu geringfügigen oder mittelschweren Verletzungen sowie zur Beschädigung des Produkts kommen, wenn die Anweisungen unter dieser Überschrift nicht befolgt werden.		

Hinweis: Die Nichtbeachtung der Anweisungen unter der Überschrift "ACHTUNG" kann je nach Situation schwere Unfälle zur Folge haben.

WARNUNG

(Allgemeines)

- Bringen Sie eine Schutzabdeckung an und verhindern Sie den Zugang zu sich drehenden Teilen, da es andernfalls zu Verletzungen kommen kann. Sehen Sie einen Sicherheitsmechanismus vor, der drehende Teile zum Stillstand bringt, wenn die Abdeckung angehoben wird.
- Um die falsche Handhabung und gefährliche Situationen zu vermeiden, dürfen Transport, Montage, Betrieb, Wartung und Überprüfung nur von entsprechend ausgebildeten Technikern vorgenommen werden.
- Wird die Kupplung in Fahrzeuge für den Personentransport eingebaut, muss das Fahrzeug durch eine entsprechende Vorrichtung geschützt werden, da es andernfalls zu Unfällen oder Schäden kommen kann.
- Wird die Kupplung für einen Fahrstuhl verwendet, muss durch eine Sicherheitsvorrichtung am Fahrstuhl verhindert werden, dass dieser abstürzt, wobei es zu Schäden und zu Unfällen mit Verletzungs- oder Todesgefahr kommen kann.

(Auspacken nach der Lieferung)

- Gehen Sie beim Auspacken vorsichtig vor, wenn die Lieferung in einer Holzkiste erfolgt. Scharfe Nägel können Verletzungen verursachen. (Zusätzliche Bearbeitung)
- Nehmen Sie in keinem Fall Änderungen an der Kupplung vor, da die Qualität oder Funktion des Produkts beeinträchtigt, die Maschine zerstört oder beschädigt oder der Bediener verletzt werden kann.

(Transport)

• Halten Sie sich nie unter dem Produkt auf, wenn es zum Zweck des Transports angehoben wird, da das Produkt oder die Last herabstürzen kann, wobei es zu Unfällen mit Verletzungs- oder Todesgefahr kommen kann.

(Montage)

- Verwenden Sie geeignete Kleidung und Schutzausrüstung (Schutzbrille, Handschuhe, Sicherheitsschuhe usw.).
- Stellen Sie vor Beginn der Montage sicher, dass die Stromversorgung ausgeschaltet ist und die Maschine vollständig zum Stillstand
 gekommen ist. Treffen Sie entsprechende Maßnahmen, um zu verhindern, dass die Stromversorgung versehentlich wiederhergestellt wird.
- Ziehen Sie die Innensechskantschrauben fest an und sichern Sie sie mit ausreichend Schraubensicherungsmittel. (Betrieb)
- Vermeiden Sie den Kontakt mit sich drehenden Teilen (Kupplung, Welle usw.) während des Betriebs. Sich drehende Teile können in der Nähe befindliche Gegenstände erfassen und schwere Verletzungen verursachen.

(Wartung und Überprüfung)

- Vermeiden Sie den Kontakt mit sich drehenden Teilen (Kupplung, Welle usw.) während der Wartung und Überprüfung. Sich drehende Teile können in der Nähe befindliche Gegenstände erfassen und schwere Verletzungen verursachen.
- Stellen Sie vor Beginn der Wartung oder Überprüfung sicher, dass die Stromversorgung ausgeschaltet ist und die Maschine vollständig zum Stillstand gekommen ist. Treffen Sie entsprechende Maßnahmen, um zu verhindern, dass die Stromversorgung versehentlich wiederhergestellt wird. Stellen Sie sicher, dass die antreibende und die angetriebene Ausrüstung ebenfalls vollständig zum Stillstand gekommen ist.

ACHTUNG

(Allgemeines)

- Verwenden Sie eine Kupplung nicht, wenn deren in der Zeichnung angegebene Leistung überschritten wird. Wird die Leistung überschritten, kann es zur Zerstörung der Maschine und zu Verletzungen kommen.
- Verwenden Sie keine beschädigten Kupplungen. Sie können Ihre Anlage zerstören und Verletzungen verursachen. (Transport)
- Achten Sie besonders darauf, dass die Ausrüstung während des Transports nicht herunterfallen oder umkippen kann. (Montage)
- Berühren Sie die Kanten oder den Innendurchmesser von Teilen nicht mit bloßen Händen, um Verletzungen zu vermeiden.
- Richten Sie beim Montieren der Kupplung den Antrieb und die angetriebenen Wellen gemäß der Beschreibung in der Betriebsanleitung aufeinander aus.
 (Betrieb)
- Berühren Sie während des Betriebs nicht die Kupplung, um Verletzungen zu vermeiden.
- Schalten Sie die Maschine sofort aus, wenn Sie Anzeichen des unnormalen Betriebsverhaltens erkennen.

(Wartung und Überprüfung)

- Verwenden Sie geeignete Kleidung und Schutzausrüstung (Schutzbrille, Handschuhe, Sicherheitsschuhe usw.).
- Reinigen Sie den umliegenden Bereich und sorgen Sie für Übersichtlichkeit, um Sekundärunfälle zu vermeiden.
- Halten Sie die allgemeinen Standards der Vorordnung zu Sicherheit und Hygiene am Arbeitsplatz 2-1-1 ein.
- Stellen Sie durch regelmäßige Überprüfungen sicher, dass der Antrieb und die angetriebenen Wellen gemäß der Beschreibung in der Betriebsanleitung aufeinander ausgerichtet und die Gummi- und Kunststoffteile nicht verschlissen oder verformt sind.
 (Umwelt)
- Alte Kupplungen müssen als allgemeiner Abfall von Fachbetrieben entsorgt werden.
- Diese Kupplung erfüllt die Anforderungen der RoHS-Normen (Restriction of Certain Hazardous Substances) und enthält keine gefährlichen Chemikalien.

TSUBAKIMOTO CHAIN CO.

Telefon: +81-774-64-5023/4 1-3 Kannabidai 1-chome Fax : +81-774-64-5212 Kyotanabe, Kyoto 610-0380, Japan

http://tsubakimoto.com/

Globale Partner:

NORD- und SÜDAMERIKA

U.S. TSUBAKI POWER TRANSMISSION, LLC

301 E. Marquardt Drive Wheeling, IL 60090-6497 U.S.A.

Telefon: +1-847-459-9500 : +1-847-459-9515 Fax

TSUBAKI of CANADA LIMITED

1630 Drew Road Mississauga, Ontario, L5S 1J6 Canada

Telefon: +1-905-676-0400 : +1-905-676-0904

TSUBAKI BRASIL

EQUIPAMENTOS INDUSTRIAIS LTDA.

Rua Pamplona, 1018 - CJ. 73/74, Jardim Paulista, CEP 01405-001, São Paulo - S.P. Brazil

Telefon: +55-11-3253-5656 : +55-11-3253-3384

EUROPA

TSUBAKIMOTO EUROPE B.V.

Aventurijn 1200, 3316 LB Dordrecht

The Netherlands

Telefon: +31-78-6204000 : +31-78-6204001

TSUBAKIMOTO U.K. LTD.

Osier Drive, Sherwood Park Annesley, Nottingham NG15 0DX U.K.

Telefon: +44-1623-688-700 : +44-1623-688-789

TSUBAKI DEUTSCHLAND GmbH

ASTO Park Oberpfaffenhofen Friendrichshafener Straße 1 D-82205 Gilching,

Deutschland

Telefon: +49-8105-7307100 Fax : +49-8105-7307101

ASIEN und OZEANIEN

TSUBAKIMOTO SINGAPORE PTE. LTD.

25 Gul Lane Jurong

Taiwan

Singapore 629419 Telefon: +65-6861-0422/3/4 : +65-6861-7035 Fax

TAIWAN TSUBAKIMOTO CO.

Telefon: +886-33-293827/8/9

: +886-33-293065

No. 33, Lane 17, Zihciang North Road Gueishan Township, Taoyuan County

TSUBAKI INDIA POWER TRANSMISSION PRIVATE LIMITED

Chandrika Chambers No.4, 3rd Floor,

Anthony Street, Royapettah, Chennai, Tamil Nadu 600014 India

Telefon: +91-44-42315251 : +91-44-42315253

KOREA CONVEYOR IND. CO., LTD

72-5 Onsoo-Dong Kuro-Ku, Seoul

Korea

Telefon: +82-2-2619-4711 : +82-2-2619-0819

TSUBAKIMOTO (THAILAND) CO., LTD.

388 Exchange Tower, 19th Floor Unit 1902, Sukhumvit Road, Klongtoey, Bangkok 10110 Thailand

Telefon: +66-2-262-0667/8/9 (3 Leitungen)

: +66-2-262-0670

TSUBAKI ALISTRALIA PTV. LTD.

Unit E, 95-101 Silverwater Road Silverwater, N.S.W. 2128

Australia

Telefon: +61-2-9704-2500 : +61-2-9704-2550 Fax

TSUBAKI EMERSON MACHINERY (SHANGHAI) CO., LTD.

No.5 Building, No.1151 Xingxian Rd., North Jiading Industry Zone,

Shanghai 201815, People's Republic of China

Telefon: +86-21-3953-8188 : +86-21-6916-9308

Herausgeber: