

Poly-Stahl-Kette

Vorteile

Verbesserte Leistung

Die Tsubaki PC-Kette bietet für Anwendungen, in denen es auf Korrosionsschutz und Schmiermittelfreiheit ankommt, eine sauberere und langlebige Alternative zu Edelstahlketten.

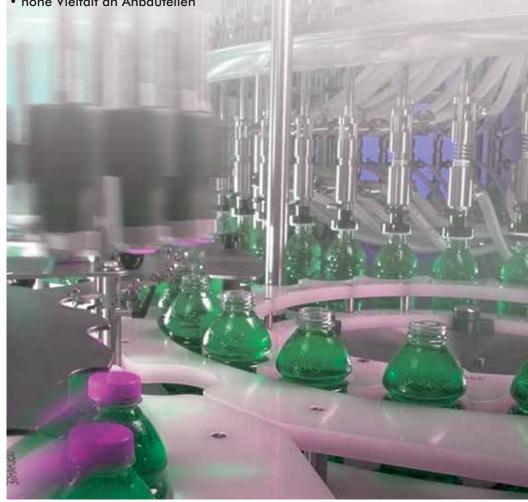
Niedrigere Wartungskosten

Die in ihren Abmessungen gegen BS und ANSI Ketten austauschbare Tsubaki PC-Kette ist deutlich leichter als alle Stahlketten – bei einem leiseren Betrieb, bei weniger Verschleiß und einem geringeren Wartungsaufwand.

Breite Einsetzbarkeit

Angesichts vielfältigster Konfigurationsmöglichkeiten und einer umfassenden Auswahl an Anbauteilen (A1, K1, SA1, SK1, E1 und E2) gibt es praktisch für jede beliebige Anwendung die passende PC-Kette.

Industrieanwendungen:


- Lebensmittel
- Verpackung
- Pharma
- Gesundheit
- Reinraum
- Elektronik
- Kleine Förderbänder
- · ... und noch viele andere!

Schmiermittelfreier Betrieb

Lange Lebensdauer - ohne Schmierung

Eigenschaften

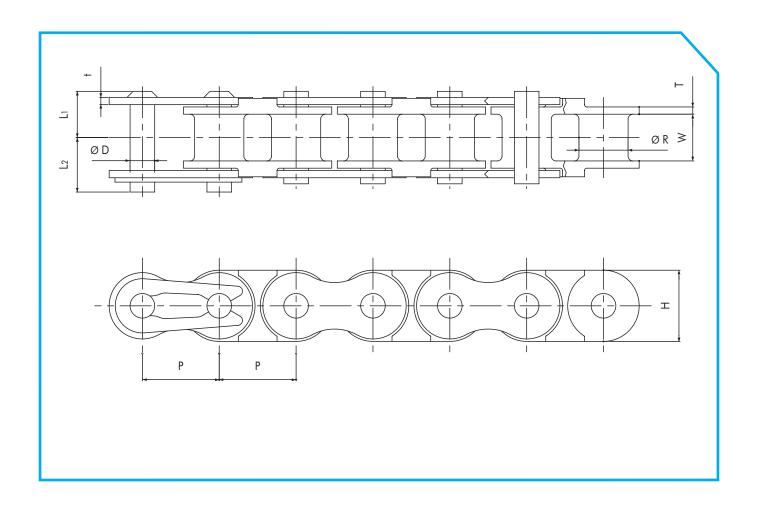
- schmiermittelfreier Betrieb
- hohe Lebensdauer
- leichtgewicht
- lieferbar in mehrere Materialsorten (auch Lebensmittelgeeignet)
- leise
- umweltfreundlich
- hohe Vielfalt an Anbauteilen

ı

Leichtgewicht

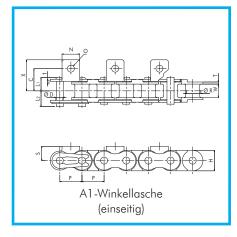
Geeignet für saubere Umgebungen

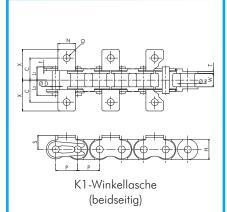
Tsubaki BS & ANSI standard PC-Kette


Tsubaki BS/DIN und ANSI standard PC Poly-Stahl-Kette ist eine Kombinationskette die die Vorteile von Kunststoff und Edelstahl zusammenbringt.

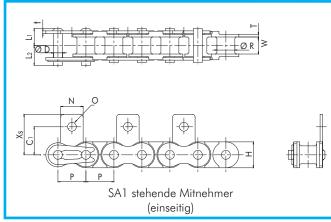
Zum einen werden Außenlaschen und Bolzen aus rostfreiem Edelstahl für eine höhere Festigkeit verwendet und zum anderen elastische Kettenglieder und Rollen aus technischem Polycarbonat für ein geringeres Gewicht und eine höhere Lebensdauer, **ohne Schmierung.**

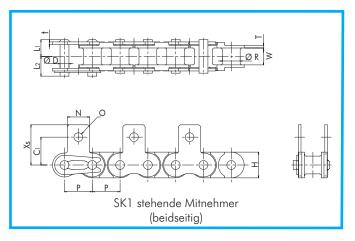
Tsubaki ist der Pionier dieser Kettensorte, der bereits vor 10 Jahre in ANSI Standard auf den Markt gebracht wurde. Mit ihrer Widerstandsfähigkeit gegen Witterungseinflüsse, Reinigungsmittel und Dampf sowie Lebensmittelbestandteile wie Öl und Milchsäure ist diese Kette eine ideale Lösung zur Vermeidung von Korrosion in unterschiedlichsten technischen Anwendungen.

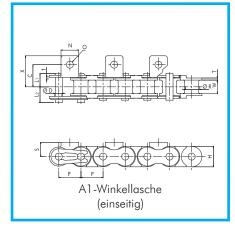

ANTRIEBSKETTE

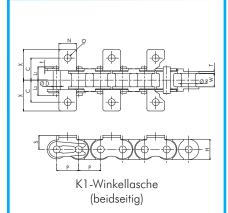


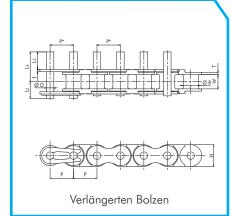
BS/DIN Ant	BS/DIN Antriebskette Alle Abmessungen in mm									ngen in mm			
						Bolzen		Lasche					
Tsubaki Typ	ISO-Nr. BS/DIN	Teilung	Buchse- Diameter	Innere Breite	Dia- meter	Länç	ge	Stär	ke	Höhe	Max. Zul. Belastung	Gewicht ca.	Gliederzahl/ St.
		Р	R	W	D	L1	L2	T	t	Н	kN (kgf)	kg/m	
RF06B PC	06B	9.525	6.35	5.72	3.28	6.5	7.25	1.3	1.0	8.6	0.20 (20)	0.23	526
RF08B PC	08B	12.70	8.51	7.75	4.45	8.35	10.05	1.6	1.5	12.0	0.43 (44)	0.40	394
RF10B PC	10B	15.875	10.16	9.65	5.08	9.55	11.25	1.5	1.5	14.7	0.52 (53)	0.51	316
RF12B PC	12B	19.05	12.07	11.68	5.72	11.1	13.0	1.8	1.8	16.1	0.70 (71)	0.67	264

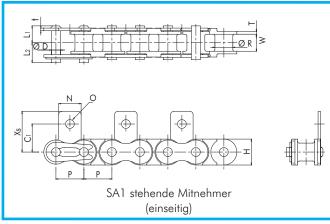

ANSI-Antri	ANSI-Antriebskette Alle Abmessungen in mm												
						Bolzen		Lasche					
Tsubaki Typ	ANSI Nr.	Teilung	Buchse- Diameter	Innere Breite	Dia- meter	Läng	je	Stärl	ke	Höhe	Max. Zul. Belasting	Gewicht ca.	Gliederzahl/ St.
		Р	R	W	D	L1	L2	T	t	Н	kN (kgf)	kg/m	
RF25 PC	25	6.35	3.30	3.18	2.31	4.5	5.5	1.3	0.75	6.0	0.08 (8)	0.095	160
RF35 PC	35	9.525	5.08	4.78	3.59	6.85	7.85	2.2	1.25	9.0	0.18 (18)	0.22	320
RF40 PC	40	12.70	7.92	7.95	3.97	8.25	9.95	1.5	1.5	12.0	0.44 (45)	0.39	240
RF50 PC	50	15.875	10.16	9.53	5.09	10.3	12.0	2.0	2.0	15.0	0.69 (70)	0.58	192
RF60 PC	60	19.05	11.91	12.70	5.96	12.85	14.75	2.4	2.4	18.1	0.88 (90)	0.82	160

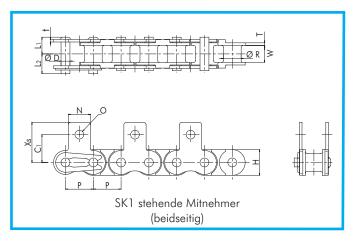

BS/DIN-KETTE mit ANBAUTEILE


BS/DIN-För	BS/DIN-Förderkette mit Anbauteile Alle Abmessungen in mm									ngen in mm				
					Bolzen				Lasche					
Tsubaki Typ	J	Buchse- Diameter	Innere Breite	Dia- meter	Länge		Stä	ırke	Höhe	Max. Zul. Belastung	Gewicht ca.	Gliederzahl/ St.		
	Р	R	W	D	L1	L2	L3	L4	T	t	Н	kN (kgf)	kg/m	
RF06B PC	9.525	6.35	5.72	3.28	6.5	7.25	9.5	14.85	1.3	1.0	8.6	0.20 (20)	0.23	320
RF08B PC	12.70	8.51	7.75	4.45	8.35	10.05	9.5	16.85	1.6	1.5	12.0	0.43 (44)	0.40	240
RF10B PC	15.875	10.16	9.65	5.08	9.55	11.25	11.9	20.25	1.5	1.5	14.7	0.52 (53)	0.51	192
RF12B PC	19.05	12.07	11.68	5.72	11.1	13.0	14.3	24.1	1.8	1.8	16.1	0.70 (71)	0.67	160


Tsubaki Typ	С	C1	N	0	S	Χ	Xs
RF06B PC	9.5	9.5	8.5	3.5	6.5	14.1	14.3
RF08B PC	11.9	12.7	11.4	4.2	8.9	19.05	19.3
RF10B PC	15.9	15.9	12.7	5.0	10.2	22.25	22.9
RF12B PC	19.05	22.2	16.5	7.1	13.5	29.85	32.3


Bemerkungen:


- Gekröpfte Glieder nicht lieferbar
- 2. Außenlasche und Bolzen aus SUS304
- 3. Die wirkliche P*-Abmessung weicht ab von P. Bitte fragen Sie Tsubaki


ANSI-KETTE MIT ANBAUTEILE

ANSI-Förde	NSI-Förderkette mit Anbauteile Alle Abmessungen in mm													
					Bolzen				Lasche					
Tsubaki Type	Teilung	Buchse- Diameter	Innere Breite	Dia- meter		Läng	ge		Stä	irke	Höhe	Max. Zul. Belastung	Gewicht ca.	Gliederzahl/ St.
	Р	R	W	D	L1	L2	L3	L4	T	t	Н	kN (kgf)	kg/m	
RF25 PC	6.35	3.30	3.18	2.31	4.5	5.5	-	-	1.3	0.75	6.0	0.08 (8)	0.095	160
RF35 PC	9.525	5.08	4.78	3.59	6.85	7.85	-	-	2.2	1.25	9.0	0.18 (18)	0.22	320
RF40 PC	12.70	7.92	7.95	3.97	8.25	9.95	9.4	16.75	1.5	1.5	12.0	0.44 (45)	0.39	240
RF50 PC	15.875	10.16	9.53	5.09	10.3	12.0	11.9	21.0	2.0	2.0	15.0	0.69 (70)	0.58	192
RF60 PC	19.05	11.91	12.70	5.96	12.85	14.75	14.2	25.75	2.4	2.4	18.1	0.88 (90)	0.82	160

Tsubaki Typ	С	C1	N	0	S	Χ	Xs
RF25 PC	7.95	7.95	5.6	3.4	4.75	11.45	11.65
RF35 PC	10.5	9.5	7.9	3.4	6.35	15.35	14.55
RF40 PC	12.75	12.7	9.5	3.6	8.0	17.8	17.4
RF50 PC	16.0	15.9	12.7	5.2	10.3	23.55	23.05
RF60 PC	19.15	18.3	15.9	5.2	11.9	28.35	26.85

Bemerkungen:

- 1. Gekröpfte Glieder nicht lieferbar
- Außenlasche und Bolzen aus SUS304
 Das tatsächliche P*-Maß unterscheidet sich P. Bitte fragen Sie Tsubaki

Lösungsfindung

Die Innovationen der Kunststoffwerkstoffe haben die idealen Voraussetzungen für die neuen Tsubaki-Kunststoffketten geschaffen mit denen Probleme wie Reibung, statische Aufladung, chemische Korrosion oder Hygiene der Vergangenheit angehören.

Umweltfreundlichkeit

Der Schutz unserer Umwelt gehört zu den zentralen Anliegen der TSUBAKIMOTO CHAIN CO. Aus diesem Grund stellen wir uns mit diesen neuen Kunststoffketten den Herausforderungen des 21. Jahrhunderts – weniger Energieverbrauch, hohe Recyclingfähigkeit und eine geringere Beanspruchung der natürlichen Ressourcen.

Problem:

- Bakterien und Schimmel in feuchter Umgebung
- kurze Lebensdauer

Unsere Lösung:

MWS-Kette

Problem:

- instabiler Transport wegen mangelnder Gleitfähigkeit
- zu hoher Druck
- kippende Flaschen
- kurze Lebensdauer
- hohe Betriebskosten
- teuere Schmierung

Unsere Lösung:

UMW-Kette

Problem:

- Schäden durch Heißwasser und hohe Temperaturen
- Schäden durch Sterilisieren
- Verschleiß durch Hochgeschwindigkeitsbeförderung

Unsere Lösung:

KV-Kette

Problem:

• Korrosion in sauren und alkalischen Umgebungen

Unsere Lösung:

SY-Kette

Problem:

• Betrieb unter UV-Licht

Unsere Lösung:

UVR-Kette

Problem:

- abschüßige Förderung in trockener Umgebung
- Schäden durch Stöße
- Schäden durch hohe Temperaturen

Unsere Lösung:

DIA-Kette

Problem:

- Feuchte Umgebung
- Schäden durch Stöße
- Korrosion in chemischer Umgebung
- Betrieb unter UV-Licht

Unsere Lösung:

DIY-Kette

Diese sind nur einige Beispiele der Einsetzbarkeit dieser Kette. Bitte fragen Sie bei Tsubaki nach für weitere Einzelheiten.

Auswahlprozedur

Kettenauswahl für Antriebsanwendung

1. Größe bestimmen

Die folgende Formel ergibt die Kettengröße.

Kettenspannung Td berechnen:

Td = Maximale Nutzlast x Ka

Korrektur-Faktor, Ks Geschw.-Faktor, Kv

Zahnrad-Faktor, Kc

 $\mathsf{Td} \overset{\leq}{=} \begin{array}{l} \mathsf{Maximal\ zul\"{a}ssige} \\ \mathsf{Belastung\ der\ Kette} \end{array}$

Korrekturfaktor: Ks (Tabelle 1-1)

			Verbrennung	gsmotor
Art des Stoßes	Maschinenbeispiel	Elektromotor oder Turbine	mit Hydraulik- Antrieb	ohne Hydraulik- Antrieb
sanft	Riemenförderer Kettenförderer Zentrifugalgebläse Normale Textilmaschine	1.0	1.0	1.2

Geschwindingkeitskoeffizient: Kv (Tabelle 1-2)

Kettengeschw.	Faktor
0 ~ 15 m/min	1.0
15 ~ 30 m/min	1.2
30 ~ 50 m/min	1.4
50 ~ 70 m/min	1.6

Kettenrad Zahnfaktor: Kc (Tabelle 1-3)

Zahl der Zähne	Faktor
9 ~ 14	1.16
15 ~ 23	1.12
24 ~ 37	1.08
38 ~ 59	1.04
60 ~	1.00

Kettenauswahl für Förderanwendung

1. Förderbedingungen feststellen

Förderertyp (d.h. Plattenbandförderer, Eimerkettenförderer etc.)

Förderwinkel (d.h. horizontal, geneigt, senkrecht)

Typ, Abmessungen und Gewicht des Förderguts

Fördergeschwindigkeit

Fördererlänge

Umgebungsbedingungen für den Förderbetrieb (d.h. Temperatur, Korrosionsfaktoren etc.) (mit oder ohne Schmierung)

2. Vorläufige Kettengröße auswählen

 $T(kN) = W_T \times f_1 \times K_V$

WT: Gewicht des Förderguts (ohne Kette) kN

f1: Reibungskoeffizient (Tabelle 2-1)

Kv: Geschwindigkeitskoeffizient (Tabelle 1-2)

* Wenn 2 Parallelstränge eingesetzt werden, sollten Kettentyp und Größe anhand von T/2 so bestimmt werden, dass die Kettenspannung kleiner als das zulässige Maximum ist.

3. Zulässige Belastung des inneren Kettenglieds feststellen

Einh.: N (kgf)

Kettengröße	Inneres Glied
RF06B PC	20 (2.0)
RF08B PC	35 (3.5)
RF10B PC	40 (4)
RF12B PC	60 (6)

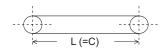
Kettengröße	Inneres Glied
RF25 PC	5 (0.5)
RF35 PC	15 (1.5)
RF40 PC	20 (2)
RF50 PC	40 (4)
RF60 PC	60 (6)

Legende

- T= Maximale statische Dehnbelastung der Kette (kN)
- V= Fördergeschwindigkeit (m/min)
- H= Vertikalabstand zwischen Zahnrädern (m)
- L= Horizontalabstand zwischen Zahnrädern (m)
- C= Gerader Abstand zwischen Zahnrädern (m)
- m= Gewicht der beweglichen Teile (kg/m)
- W= Gesamtgewicht der beförderten Objekte (Maximum) (kg)

Beim Befördern:

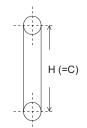
- q= Übersetzung der Antriebsteile
- f1 = Reibungskoeffizient zwischen Kette und Führungsschiene (Tabelle 2-1)


kW=Benötigte Leistung

G= Erdbeschleunigung $= 9.8 \text{ m/s}^2$

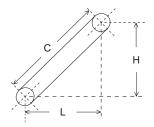
4. Maximale Dehnbelastung der Kette berechnen

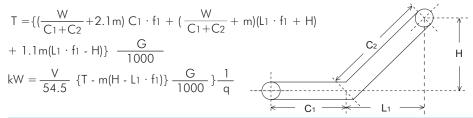
Horizontale Förderung


$$T = (W + 2.1m \cdot C) f1 \frac{G}{1000}$$
$$kW = \frac{T \cdot V}{54.5} \cdot \frac{1}{q}$$

Vertikale Förderung

$$T = (W + m \cdot C) \frac{G}{1000}$$


$$kW = \frac{W \cdot V}{54.5} \cdot \frac{G}{1000} \cdot \frac{1}{q}$$


Geneigte Förderung

$$T = \{(W + m \cdot C) \frac{L \cdot f_1 + H}{C} + 1.1m(L \cdot f_1 - H)\} \frac{G}{1000}$$

$$kW = \frac{V}{54.5} \{T - m(H - L \cdot f_1) \frac{G}{1000}\} \frac{1}{q}$$

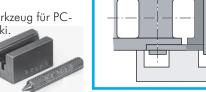
Horizontale + geneigte Förderung

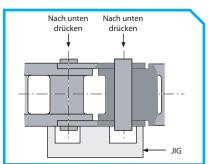
Gleitreibungskoeffizient: f1 (Table 2-1)

Poly-Stahl Kette
0.25

5. Tatsächliche Kettengeschwindigkeit bestimmen Max. Dehnbelastung (T) der Kette miet dem entspr. Kettengeschwindigkeitsfaktor (Kv) aus Tabelle 2-2 (unten) multiplizieren. Danach Kette anhand folgender Formel auswählen:

Max. zulässige Belastung der Kette


(Bei 2 parallelen Kettensträngen ist die maximale Belastung der Kette = T/2)


Nach Ermittlung der Ketten-Zugkraft Td und T verweisen wir auf die Seiten 3 (Antrieb), Seite 4 (BS/DIN Förder) und Seite 5 (ANSI Förder) um die Kettenmaße, anhand der dort angeführten maximalen zulässigen Kraft auszuwählen.

Zulässige Kettengeschwindigkeit bis zu 70 m/min. - Zulässige Temperatur von -20°C bis 80°C.

Ein- und Ausbau

- 1. Für den Ausbau platzieren Sie bitte das Werkzeug wie abgebildet unter einer Außenlasche und drücken die beiden Bolzen nach unten. Achten Sie darauf, dass Sie nicht gegen den Kunststoffteil der Kette schlagen oder diesen beschädigen da dies Bruch verursachen kann.
- 2. Einzelheiten zum Spezialausbauwerkzeug für PC-Ketten erfragen Sie bitte bei Tsubaki.
- 3.Für den Einbau verwenden Sie bitte ein Verschlussglied. Einzelheiten hierzu erfragen Sie bitte bei Tsubaki.

Anleitung zur Rostbeständigkeit

Bei der Auswahl einer geeigneten Kette für Ihre Anwendung, beachten Sie bitte die u.a. Übersicht um sicher zu gehen, daß die Kette ausreichend beständig ist gegen die Substanzen in der, die Kette ausgesetzt ist. Die Testergebnisse dieser Anleitung wurden bei 20°C ermittelt. Sollten die äußeren Einflüsse zu vielfältig sein (z.B. Temperaturen der Umgebung, Zeitdauer der Einflüsse, etc.), kann ohnehin keine Garantie gegeben werden, aber es hilft eine geeignete Kettenauswahl für Ihre Anwendung zu finden.

	☆☆= voll	beständig	☆ = teilweise beständig				× = nicht			
Kettenspez.	Temp.	PC	PC-SY	MW /	UMW	KV	UVR	DIA	DIY	SS
Substanz	(°C)			MWS						
Acetone	20	☆☆	×	☆☆	☆☆	\$\$	**	☆☆	×	☆☆
Öl (pflanzlich, Mineral)	20	☆☆	☆☆	☆☆	☆☆	##	☆☆	☆☆	☆☆	☆☆
Alkohol	-	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆
Ammoniakwasser	20	☆☆	**	**	☆☆	\$\$	**	☆	☆☆	₩₩
Natriumchlorid (5%)	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆
Salzsäure (2%)	20	×	**	×	×	×	×	×	×	×
Meerwasser	20	☆	☆☆	☆	☆	☆	☆	☆	☆	☆
Sauerstoffperoxid (30%)	20	×	**	×	×	**	×	×	☆☆	☆☆
Benzin	20	☆☆	**	☆☆	☆☆	\$\$	**	\$\$	☆☆	☆☆
Ameisensäure (50%)	20	×	**	×	×	×	×	×	☆☆	\$\$
Formaldehyd (40%)	20	**	☆☆	\$\$	☆☆	☆☆	☆☆	☆	☆☆	☆☆
Milch	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	**	☆☆	☆☆
Milchsäure (10%)	20	**	☆☆	\$\$	☆☆	☆☆	☆☆	☆	☆☆	☆☆
Zitronensäure (50%)	20	☆	**	☆	☆	\$\$	☆	☆	☆☆	\$\$
Chromsäure (5%)	20	×	**	×	×	\$\$	×	×	☆☆	☆☆
Essigsäure (10%)	20	☆☆	**	**	☆☆	\$\$	**	×	☆☆	\$\$
Kohlenstofftetrachlorid (trocken)	20	☆☆	**	**	☆☆	☆	**	\$\$	☆☆	₩₩
Kalilauge (20%)	koch.	☆☆	**	☆☆	☆☆	**	**	×	☆☆	☆☆
Natriumhydroxid (25%)	20	☆☆	**	**	☆☆	\$\$	**	×	☆☆	\$\$
Salpetersäure (5%)	20	×	☆☆	×	×	☆☆	×	×	☆☆	☆☆
Essig	20	☆	☆☆	☆	☆	☆	☆	×	☆	☆
Hypochloritlösung (10%)	20	×	☆☆	×	×	×	×	×	×	×
Erfrischungsgetränke	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆
Seife & Wasserlösung	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆
Paraffin	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆
Bier	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆
Fruchtsaft	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆	☆☆	☆☆
Wein	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆
Whisky	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆
Benzol	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	\$\$	☆☆
Wasser	20	☆☆	☆☆	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆
Gemüsesaft	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆
Jod	20	×	☆☆	×	×	×	×	-	×	×
Schwefelsäure (5%)	20	×	☆☆	×	×	×	×	×	×	×
Phosphorsäure (5%)	20	×	☆☆	×	×	☆	×	×	☆	☆
Schwefeldioxid	20	-	-	-	-	-	-	-	-	☆☆
Ethylether	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆
Zinkchlorid (50%)	20	☆	☆☆	☆	☆	☆	☆	×	☆	☆
Salmiak (50%)	koch.	-	-	-	-	-	-	-	-	☆
Kaliumchlorid (gesät.)	20	-	-	-	-	-	-	-	-	☆☆
Kalziumchlorid (gesät.)	20	☆	☆☆	☆	☆	☆	☆	☆	☆	☆

	☆☆= voll l	oeständig	☆ = teilweise beständig			x = nicht empfohlen				
Kettenspez.	Temp.	PC	PC-SY	MW/	UMW	KV	UVR	DIA	DIY	SS
Substanz	(°C)			MWS						
Eisenchlorid (5%)	20	-	-	-	-	-	-	-	-	☆
Chlorgas (trocken)	20	-	☆☆	-	-	-	-	×	☆	☆
Chlorgas	-	×	-	×	×	×	×	×	×	×
Natriumperchlorat (10%)	koch.	-	-	-	-	-	-	-	-	☆☆
Kaliumpermanganat (gesät.)	20	-	☆☆	-	-	-	-	×	\$\$	\$\$
Glycerin	20	☆☆	☆☆	☆☆	☆☆	☆☆	**	**	**	☆☆
Teeröl	20	-	-	-	-	-	-	-	-	☆☆
Ketchup	20	☆☆	**	☆☆	**	☆☆	**	☆☆	**	☆☆
Fotoentwickler	20	☆☆	**	☆☆	**	\$\$	**	☆☆	**	☆☆
Reiniger	-	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	**	**	☆☆
Kaffee	koch.	☆☆	**	☆☆	**	\$\$	**	☆☆	**	☆☆
Coca Cork Syrup	-	☆☆	☆☆	\$\$	☆☆	☆☆	☆☆	☆☆	**	☆☆
Zuckerlösung	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	**	**	☆☆
Natriumcyanid	20	-	-	-	-	-	-	-	-	☆☆
Kaliumdichromat (10%)	20	☆☆	-	☆☆	☆☆	☆☆	☆☆	☆☆	-	☆☆
Oxalsäure (10%)	20	-	☆☆	-	-	-	-	☆☆	☆☆	☆☆
Weinsäure (10%)	20	☆☆	☆☆	☆☆	☆☆	☆☆	公公	☆☆	☆☆	☆☆
Ammoniumnitrat (gesät.)	koch.	☆	**	☆	☆	-	☆	☆☆	☆☆	☆☆
Kaliumnitrat (25%)	20	☆☆	-	☆☆	**	☆☆	**	☆☆	-	☆☆
Kaliumnitrat (25%)	koch.	-	-	1	-	-	-	-	-	☆☆
Stearinsäure (100%)	20	×	-	×	×	×	×	×	×	×
Erfrischungsgetränk	20	☆☆	**	☆☆	**	☆☆	**	☆☆	☆☆	☆☆
Karbolsäure	20	×	**	×	×	-	×	×	**	**
Petroleum	20	\$\$	-	☆☆	**	\$\$	**	**	-	##
Kohlensäurehaltiges Wasser	-	-	-	-	-	-	-	-	-	☆☆
Natriumhydrogenkarbonat	20	☆☆	-	2	**	-	**	-	-	☆☆
Natriumkarbonat (gesät.)	koch.	-	**	-	-	-	-	-	**	\$\$
Natriumthiosulfat (25%)	koch.	-	-	-	-	-	-	-	-	☆☆
Terpentinöl	35	-	-	-	-	-	-	-	-	☆☆
Kerosin	20	-	**	-	-	-	-	-	**	☆☆
Lack	-	-	-	-	-	-	-	-	-	☆☆
Salpetersäure (65%)	20	×	☆☆	×	×	-	×	×	☆☆	☆☆
Salpetersäure (65%)	koch.	×	×	×	×	-	×	×	×	☆
Honig	20	☆☆	☆☆	☆☆	☆☆	☆☆	**	☆☆	**	\$\$
Pikrinsäure (gesät.)	20	-	-	-	-	-	-	-	-	\$\$
Borsäure (50%)	100	-	-	-	-	-	-	-	-	☆☆
Mayonnaise	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	**	☆☆	☆☆
Buttersäure	20	☆☆	-	☆☆	☆☆	-	☆☆	☆☆	-	☆☆
Schwefelwasserstoff (trocken)		☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	**	₩₩	☆☆
Schwefelwasserstoff (nass)	-	×	-	×	×	×	×	×	×	×
Zinksulfat (25%	20	-	☆☆	-	-	-	-	-	☆☆	☆☆
Aluminiumsulfat (gesät.)	20	-	-	-	-	-	-	-	-	☆☆
Ammoniumsulfat (gesät.)	20	-	-	-	-	-	-	-	-	☆☆
Natriumsulfat (gesät.)	20	-	-	-	-	-	-	-	-	☆☆
Apfelsäure (50%)	20	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆	☆☆

Tsubakimoto Europe BV Aventurijn 1200

3316 LB Dordrecht Niederlande

Telefon: +31 (0)78 6204000
Fax: +31 (0)78 6204001
E-mail: info@tsubaki.nl
Internet: tsubakimoto.com

Tsubakimoto UK Ltd.

Osier Drive, Sherwood Park Annesley, Nottingham NG15 0DX Großbritannien

Telefon: +44 (0)1623 68 87 00 Fax: +44 (0)1623 68 87 89 E-mail: sales@tsubaki.co.uk Internet: tsubakimoto.com

Verteiler:

Hinweis: Da TSUBAKIMOTO EUROPE standing bemüht ist die Produktqualität zu verbessern, behalten wir uns Änderungen an den in diesem Prospekt enthaltenen Spezifikationen vor.