

## TSUBAKI SAFCON

## Overload protection and control devices



# Safety

Safety devices for protecting machinery from potentially damaging mechanical and electrical overload.

Both mechanical and electrical types are available.

## **Creating device safety and control**

From safety mechanisms like Torque Limiters, Torque Guards and Shock Relays, to controlling devices like Torque Keepers and Shock Monitors, SAFCON provides your vital machinery with top-notch safety and control.

## Control

Contributing to device automation.

MINI-KEEPER Torque Keeper









**Torque Limiter** Friction type

**Torque Guard** Separation type

**Axial Guard** Linear actuating type

**Shock Relay** Current type



TSUBAKI Safety and Control devices







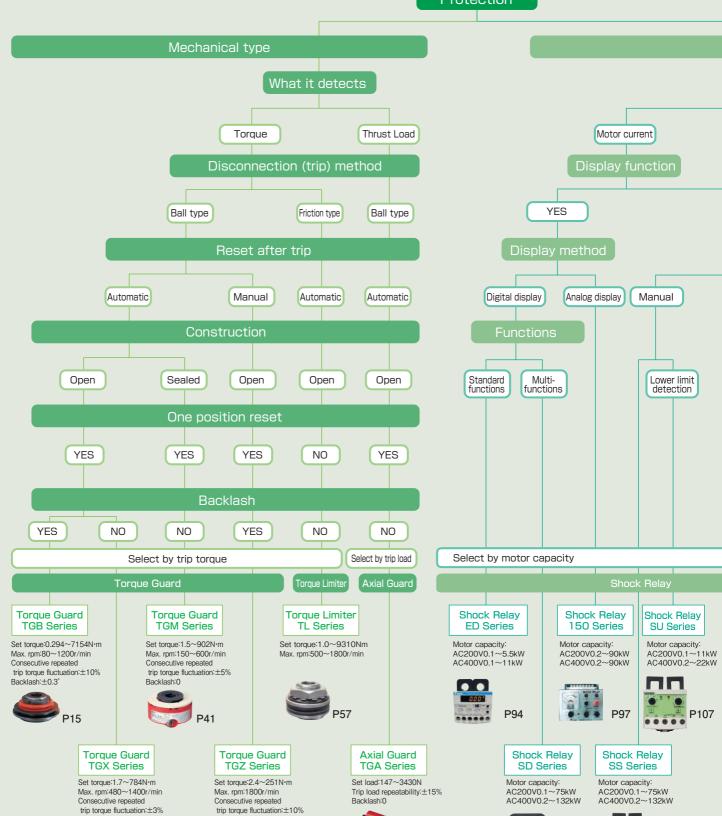
#### **Torque Keeper**

Mechanical type slipping clutch and brake

#### **MINI-KEEPER**

Mechanical type slipping clutch and brake

#### **Shock Monitor**

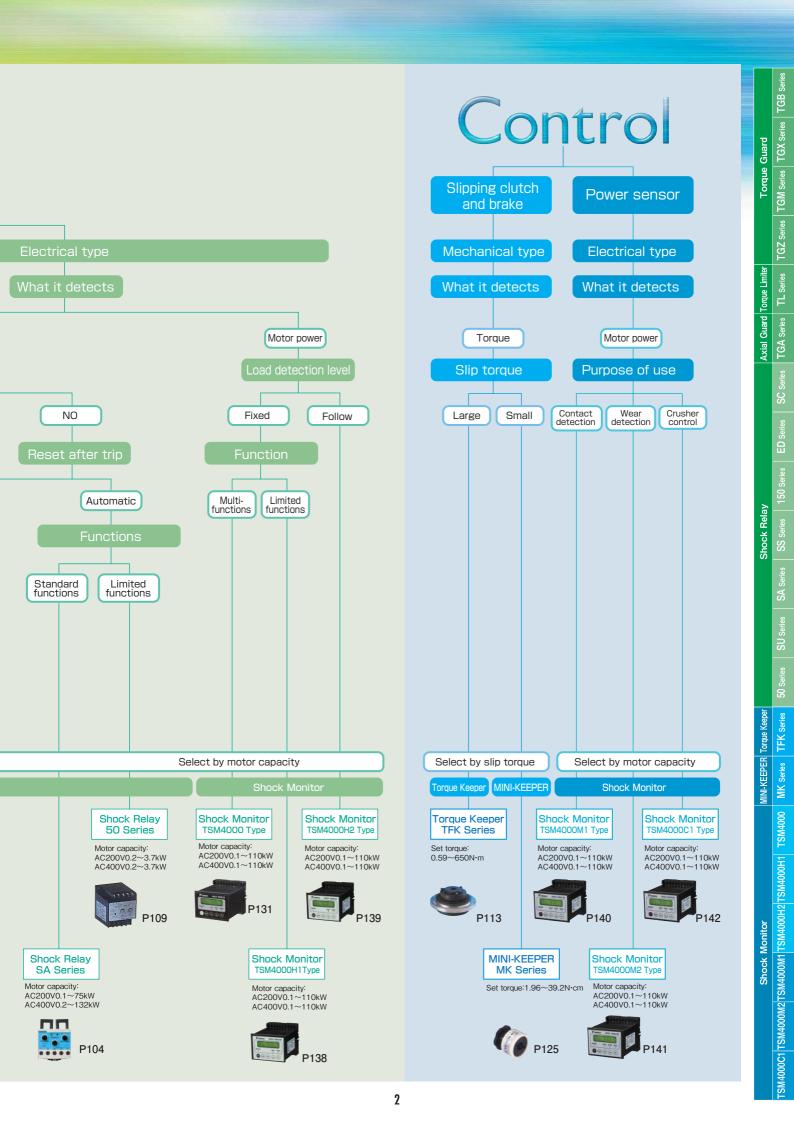

Electric type overload protection device and load sensor

## Variation

Backlash:0



Overload Protection




P101

P83

Backlash: ±0.3°

P49



## SAFCON contributes to the protection and control

Starting with the examples below, SAFCON meets a wide range of industrial equipment safety and control needs.

| Gategory                          | UE                                        |              | Selection                                                                     |               |               |               |               |                        | Safety        |  |  |  |  |
|-----------------------------------|-------------------------------------------|--------------|-------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|------------------------|---------------|--|--|--|--|
| Category                          |                                           | quide        |                                                                               |               |               |               | Torque Guard  |                        |               |  |  |  |  |
| Category                          |                                           |              |                                                                               | TGB<br>Series | TGX<br>Series | TGM<br>Series | TGZ<br>Series | TL<br>Series           | TGA<br>Series |  |  |  |  |
| Catogory                          | Machine                                   |              | Protection, detection, applications                                           |               |               |               | 8             |                        |               |  |  |  |  |
|                                   | Safety or Cor                             | itrol<br>age |                                                                               | P15           | P31           | P41           | P49           | P57                    | P67           |  |  |  |  |
| Transport                         | Crane                                     | S            | Overload protection for machine overload, jamming, etc.                       | 110           | 101           | 1 41          | 1 43          | <ul><li>I 37</li></ul> | 101           |  |  |  |  |
| equipment                         |                                           | S            | Overload protection for machine overload, jamming, etc.                       |               |               |               |               | •                      |               |  |  |  |  |
|                                   | Chain block                               | S            | Overload protection for machine overload, jamming, etc.                       |               |               |               |               | •                      |               |  |  |  |  |
|                                   | Overhead conveyor                         | S            | Chain breakage protection                                                     |               |               |               |               | •                      |               |  |  |  |  |
|                                   | Overhead conveyor                         | S            | Chain breakage detection                                                      |               |               |               |               |                        |               |  |  |  |  |
|                                   | Belt conveyor                             | S            | Belt breakage protection                                                      | •             |               | •             |               | •                      |               |  |  |  |  |
|                                   | Belt conveyor                             | S            | Belt break detection, slip detection                                          |               |               |               |               |                        |               |  |  |  |  |
|                                   | -                                         | S            | Chain breakage protection                                                     | •             |               | •             |               | •                      |               |  |  |  |  |
|                                   |                                           | S            | Chain breakage detection                                                      |               |               |               |               | _                      |               |  |  |  |  |
|                                   |                                           | S            | Roller axis damage protection                                                 | •             |               | •             |               | •                      |               |  |  |  |  |
|                                   | •                                         | S            | Screw damage protection                                                       |               |               |               |               | •                      |               |  |  |  |  |
|                                   |                                           | S            | Prevents chain breakage due to bucket jamming                                 |               |               |               |               | •                      |               |  |  |  |  |
|                                   |                                           | S            | Drive portion, pivot portion overload protection                              |               | •             |               |               |                        | •             |  |  |  |  |
| Environmental                     | Garbage disposal equipment                |              | Overload protection for garbage conveyor                                      |               |               |               |               | •                      |               |  |  |  |  |
| equipment                         | Water treatment equipment                 | S            | Overload protection due to chain breakage for scraper and dust collector      | •             |               |               |               |                        |               |  |  |  |  |
| _                                 |                                           | S            | Gate and rack damage protection  Motor protection                             | •             |               | •             |               |                        |               |  |  |  |  |
| Pump                              |                                           | S            | Motor protection                                                              |               |               |               |               |                        |               |  |  |  |  |
|                                   |                                           | S            | Motor protection                                                              |               |               |               |               |                        |               |  |  |  |  |
| De else eile e                    | Bag making and filling machine            |              | Overload protection for film feeding and seal/pillow packaging machine cutter | •             | •             | •             |               | •                      | •             |  |  |  |  |
| Packaging machine                 | Cartoning machine                         |              | Overload protection for workpiece conveyor and packaging equipment            | •             | •             |               |               |                        |               |  |  |  |  |
| maorimo                           | Vacuum packaging machine                  |              | Overload protection for workpiece conveyor and packaging equipment            | •             | •             | •             |               |                        |               |  |  |  |  |
| Food                              |                                           | S            | Overload protection for milling, mixing and sifting machine                   | •             |               | •             |               | •                      |               |  |  |  |  |
| processing                        | Noodle-making machine                     | S            | Overload protection for mixer and roller/extruder                             | •             |               | •             |               | •                      |               |  |  |  |  |
| machine                           | Bakery equipment                          | S            | Prevents chain breakage for fermentation oven and cooler                      | •             |               | •             |               | •                      |               |  |  |  |  |
|                                   | Beverages                                 | S            | Overload protection for bottle/can conveyor and dehydrating press             | •             |               | •             |               | •                      | •             |  |  |  |  |
| Machine                           | Turning machine                           | С            | Tip breakage detection                                                        |               |               |               |               |                        |               |  |  |  |  |
| tools                             | Machining                                 | С            | Drill wear detection                                                          |               |               |               |               |                        |               |  |  |  |  |
|                                   | Grinding machine                          | С            | Grinding stone contact detection                                              |               |               |               |               |                        |               |  |  |  |  |
|                                   |                                           | С            | Tap breakage detection                                                        |               |               |               |               |                        |               |  |  |  |  |
|                                   |                                           | С            | Saw contact detection                                                         |               |               |               |               |                        |               |  |  |  |  |
|                                   |                                           | S            | Prevents damage due to jammed chips                                           |               |               |               |               | •                      |               |  |  |  |  |
| Metalworking                      |                                           | S            | Punch and transfer portion protection                                         | •             | •             |               |               |                        | •             |  |  |  |  |
| machinery                         |                                           | S            | Overload protection for conveyor unit                                         | •             |               |               |               | •                      |               |  |  |  |  |
| Iron and steel                    | Rolling machine Injection molding machine |              | Overload protection for conveyor unit  Screw, mold clamping protection        |               |               | •             | •             |                        |               |  |  |  |  |
| Plastic<br>processing<br>machines | Extruding machine                         |              | Screw, gear protection                                                        |               |               |               | •             |                        |               |  |  |  |  |
|                                   | Extruding machine                         |              | Heater wire breakage detection                                                |               |               |               |               |                        |               |  |  |  |  |
| Textile                           | Spinning machine                          |              | Winding-off portion tension control                                           |               |               |               |               |                        |               |  |  |  |  |
| machines                          | Textile weaving loom                      |              | Winding portion tension control                                               |               |               | •             |               |                        |               |  |  |  |  |
| Printing                          | _                                         | С            | Printed material tension control                                              |               |               | _             |               |                        |               |  |  |  |  |
| machines                          |                                           | S            | Protects pressure portion and conveyor from overload damage                   | •             | •             |               | •             | •                      | •             |  |  |  |  |
| IT                                |                                           | С            | Printed material tension control                                              |               |               |               |               |                        |               |  |  |  |  |
|                                   | Liquid crystal manufacturing device       | S            | Conveyor unit overload protection                                             | •             | •             |               |               | •                      |               |  |  |  |  |
|                                   | Semiconductor production device           | S            | Conveyor unit overload protection                                             | •             | •             |               |               | •                      |               |  |  |  |  |
| Others                            | Crusher                                   | S            | Crusher blade protection                                                      |               |               |               | •             | •                      |               |  |  |  |  |
|                                   | Raw garbage processor                     | S            | Mixing blade damage protection                                                | •             |               |               |               | •                      |               |  |  |  |  |
|                                   | Mixer                                     | S            | Mixing blade damage protection                                                |               |               |               |               | •                      |               |  |  |  |  |
|                                   | Kneading machine                          | S            | Mixing blade damage protection                                                |               |               |               |               | •                      |               |  |  |  |  |
|                                   |                                           | S            | Workpiece jamming detection                                                   |               |               |               |               |                        |               |  |  |  |  |
|                                   | Stage device                              | S            | Floor mechanism overload protection                                           |               |               |               |               |                        |               |  |  |  |  |

## of a wide range of industrial equipment

|              |        |           |        |        |        |            |            |         |        | ⊚:Opt  | imal (   | ●:Recom      | mondoc  |
|--------------|--------|-----------|--------|--------|--------|------------|------------|---------|--------|--------|----------|--------------|---------|
|              |        |           |        |        |        |            |            |         |        | .Opt   | IIIIai V | - Necoli     | mende   |
|              |        |           |        |        |        |            |            |         |        |        |          |              |         |
|              |        |           |        |        |        |            |            |         |        | on     | 4 12 2   |              |         |
|              |        |           |        |        |        |            |            |         |        |        |          |              |         |
|              |        |           |        |        |        |            |            |         |        |        |          | _            |         |
|              |        | Shock     | Polov  |        |        | C.         | nock Monit | or      | Torque | MINI-  | Ch       | ock Monit    | or      |
|              |        | SHOCK     | nelay  |        |        | 31         | IOCK MOITH | .UI     | Keeper | KEEPER | 31       | IOCK IVIOLIT | .01     |
| sc           | ED     | 150       | SS     | SA     | SU     |            | TSM4000    |         | TFK    | MK     |          | TSM4000      |         |
| Series       | Series | Series    | Series | Series | Series | Type       | H1 Type    | H2 Type | Series | Series | M1 Type  | M2 Type      | C1 Type |
|              | 00     | province. |        | пп     |        | - Children |            |         |        |        |          | - Citizan    |         |
| H-800T       | MIS    |           | 100    |        | •      |            |            |         |        |        |          |              |         |
| ************ | *****  |           | *****  | ••••   |        | • ABS      | 041100     | 0.000   |        |        | - HORSE  | - Proces     | -       |
| P83          | P94    | P97       | P101   | P104   | P107   | P131       | P138       | P139    | P113   | P125   | P140     | P141         | P142    |
| •            | •      |           | •      |        |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           |        | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           |        | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      | •         |        |        | •      | •          | •          | •       |        |        |          |              |         |
| •            | •      |           | •      | •      | •      | •          | •          |         |        |        |          |              |         |
| •            |        |           |        | -      | •      |            |            |         |        |        |          |              |         |
| •            | •      |           | •      | •      | -      | •          | •          |         |        |        |          |              |         |
| •            |        |           |        |        | •      |            |            |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      | •         | •      | •      |        | •          | •          |         |        |        |          |              | •       |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
|              | •      | •         |        |        |        | •          | •          | •       |        |        |          |              |         |
| •            | •      | •         |        |        |        |            | •          | •       |        |        |          |              |         |
|              | _      | _         |        |        |        |            |            | •       |        |        |          |              |         |
| •            | •      |           | •      | •      | •      | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | _      | _      |        | •          | •          | •       |        |        |          |              |         |
|              |        |           | •      | •      |        |            | •          | •       |        |        |          |              |         |
|              |        |           |        |        |        | •          | •          | •       |        |        |          |              |         |
|              |        |           |        |        |        |            |            |         |        |        |          | •            |         |
|              |        |           |        |        |        |            |            |         |        |        | •        | •            |         |
| •            | •      |           |        | •      |        | •          | •          |         |        |        | •        |              |         |
|              |        |           |        |        |        | •          | •          |         |        |        |          | •            |         |
| •            | •      |           |        | •      |        | •          | •          |         |        |        | •        |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      | •         | •      |        |        | •          | •          |         |        |        |          |              |         |
|              |        | •         |        |        |        | •          |            |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        |            |            |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        |            |            |         |        |        |          |              |         |
|              |        |           |        |        | •      |            |            |         |        |        |          |              |         |
|              |        |           |        |        |        |            |            |         | •      | •      |          |              |         |
|              |        |           |        |        |        |            |            |         | •      | •      |          |              |         |
| _            |        |           |        |        |        |            |            |         | •      |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         | •      | •      |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        | •      |          |              |         |
|              |        |           | •      | •      |        | •          |            |         |        |        |          |              |         |
|              |        |           | •      | •      |        | •          | •          |         |        |        |          |              | •       |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           |        |        |        | •          | •          | •       |        |        |          |              |         |
| •            | •      |           |        |        |        | •          | •          | •       |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
| •            | •      |           | •      | •      |        | •          | •          |         |        |        |          |              |         |
|              |        |           |        |        |        |            |            |         |        |        |          |              |         |

## Application Safety

**Providing optimal** overload protection

TSUBAKI mechanical and electrical safety devices provide overload protection for various applications.

#### Packaging machine

Cutter drive portion overload protection



product used



Torque Guard TGB Series

P15

#### **Features**

- Automatic reset
- Trip torque repeatability ±10%
- Economical

#### Index table

Indexer protection



product used

Torque Guard TGX Series



P31

#### **Features**

- Non-backlash
- Automatic reset One position
- Precise trip torque
- (±3%)

#### **Pump**

Protects the pump from highly viscous material



product used



#### **Features**

- Sealed construction
- One position

#### Extruding machine

Trips to protect the machine and screw from overload to the screw



TFM product used

Torque Guard TGZ Series



#### **Features**

- Works with high rpm
- Rotates freely after trip

#### Convevor

Protects the machine from overload due to jamming



TEM product used



Torque Limiter

Automatic reset

The sprocket can be

directly mounted. making it easy to use

**Features** 

P57



Protects the mechanical system from overload due to the work

piece getting caught up in the machinery





product used



Axial Guard

P67

#### **Features**

Can protect from overload on the axial direction

#### Lifting and lowering device Detects overweight



TEM product used



Shock Relay **ED Series** 

P94

#### **Features**

- While verifying motor current during operation, the load value can be precisely set on the digital display
- Economical

#### Multiple conveyors

Perform remote monitoring by using the communication



TEM product used

Shock Relay SC Series



P83

#### **Features**

- Loads on multiple conveyors can be monitored remotely with a PC using the communication function.
- Parameter values can also be changed remotely.

Shock Monitor

Mechanical type features

Due to cutting the peak load, overload does not occur. Excessive power to the loaded axis can be shut off.

Electronic type features

All models are equipped with the start time function. Price stays same regardless of motor size.

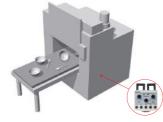
#### Waste treatment plant. transfer conveyors

Overload protection



product used

Shock Relay 150 Series


P97

#### **Features**

- Current can be verified using an analog meter
- Easy to set

#### Dishwasher

Stops overload when spoons or other utensils get jammed in the machine.



product used

Shock Relay SS Series



#### **Features**

Compact and economical

#### Shredder

Temporarily stops the shredder when the load becomes heavy



**TFM** product used

Shock Relay SA Series



P104

- Makes frequent stops
- Convenient automatic reset
- Compact

**Features** 

Economical

#### Submersible pump Prevents pump motor burnout



TEM product used

Shock Relay SU Series



#### **Features**

- Compact size
- Economical
- Test functions

#### Multi-spindle drilling machine

Overload protection and breakage detection for each tool



**TEM** product used





P131

#### **Features**

- Detects overload and tool breakage when machining with high precision
- The set value for each tool can be changed (8 types)

#### Bread making machine Prevents oven chain breakage



**TEM** product used



Shock Monito TSM4000H1 Type

P138

#### **Features**

Accurately detects overload to protect your valuable machines from

#### Water treatment equipment

Sewage collector chain breakage prevention



TEM product used



P139

Shock Monito TSM4000H2 Type

#### **Features**

 Because of the load following function, the set value can be followed and abnormal load can be detected precisely even if there is a small efficiency change in the high gear ratio reducer



## Application Controlling devices

#### Slipping clutch and brake

Because it is possible to use even with continuous slipping, it is ideal for braking, accumulation and dragging.





#### Power sensor

Preventitive device maintenance and automation can be realised by detecting minute overload variation for grindstone work piece contacts, tool wear, crusher automatic operation, etc.







## Safety Devices

## **Mechanical Type**

Torque Guard, Torque Limiter, Axial Guard

|   | Features, variation     | p9~p10              |
|---|-------------------------|---------------------|
|   | Selection guide         | p11~p12             |
|   | Applications            | - p13~p14           |
| 8 | Torque Guard TGB Series | <sup></sup> p15~p3C |
|   | Torque Guard TGX Series | p31~p4C             |
|   | Torque Guard TGM Series | p41~p48             |
| 8 | Torque Guard TGZ Series | <sup></sup> p49∼p56 |
|   | Torque Limiter          | <sup></sup> p57∼p66 |
|   | Axial Guard             | p67~p77             |

#### Features

### Mechanical type safety devices

Torque Guard, Torque Limiter, Axial Guard

General use, economical

Torque Guard
TGB Series



Easy to operate and reasonably priced. Can be used with almost all machines.

High precision, high rigidity

Torque Guard
TGX Series



No backlash and unsurpassed operation rigidity. Ideal for machines that require precision positioning.

Sealed construction

Torque Guard
TGM Series

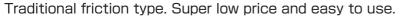


The sealed type possesses unsurpassed precision. Excels in wet, oily and dusty environments.



**ON-OFF**, release

Torque Guard
TGZ Series




As a release type protection device, as well as an ON-OFF clutch, its simple layout makes it easy to use.



Friction type Toro

Torque Limiter





Linear actuating type

**Axial Guard** 

This is a new type of overload protection device with ball and groove construction.



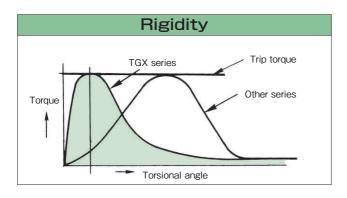
### Mechanical safety mechanism variation

In order to meet the diverse needs of our customers, we provide a wide range of mechanical safety products. Refer to the chart below to choose the functions and device characteristics that best suit your safety needs.

| Product name                                  | Torque Guard               |                            |                            |                            |  |  |  |  |
|-----------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|
| Function.                                     | TGB Series                 |                            |                            |                            |  |  |  |  |
| capacity                                      | Compact size (TGB08-16)    | Medium size (TGB20-70)     | Large size (TGB90-130)     | With sprocket (TGB20-70)   |  |  |  |  |
| Torque range N·m<br>{kgf·m}                   | 0.294~11.76<br>{0.03~1.2}  | 9.8~1080<br>{1.0~110}      | 441~7154<br>{45~730}       | 9.8~1080<br>{1.0~110}      |  |  |  |  |
| Bore range(mm)                                | 6~16                       | 10~70                      | 45~130                     | 10~70                      |  |  |  |  |
| Consecutive repeated trip torque fluctuations | ±10%                       | ±10%                       | ±10%                       | ±10%                       |  |  |  |  |
| Backlash                                      | None                       | Almost none                | Almost none                | Almost none                |  |  |  |  |
| Reset method                                  | Automatic                  | Automatic                  | Automatic                  | Automatic                  |  |  |  |  |
| Overload detection                            | TG Sensor<br>(option p.28) | TG Sensor<br>(option p.28) | TG Sensor<br>(option p.28) | TG Sensor<br>(option p.28) |  |  |  |  |
| Torque indicator                              | Yes                        | Yes                        | Yes                        | Yes                        |  |  |  |  |
| Exterior                                      |                            |                            |                            |                            |  |  |  |  |

| Product                                       |                            | Torqe Guard          |                            | Torque Limiter                   | Axial Guard                  |
|-----------------------------------------------|----------------------------|----------------------|----------------------------|----------------------------------|------------------------------|
| name<br>Function,<br>capacity                 | TGX Series                 | TGM Series           | TGZ Series                 | TL                               | TGA                          |
| Torque range N·m<br>{kgf·m}                   | 1.7~784<br>{0.17~80}       | 1.5~902<br>{0.15~92} | 2.4~451<br>{0.24~46}       | 1.0~9310<br>{0.1~950}            | -                            |
| Load range<br>N{kgf}                          | _                          | _                    | _                          | _                                | 147~3430<br>{15~350}         |
| Bore range(mm)                                | 8~70                       | 10~60                | 10~50                      | 8~130                            | _                            |
| Consecutive repeated trip torque fluctuations | ±3%                        | ±5%                  | ±10%                       | _                                | ±15%<br>(trip load)          |
| Backlash                                      | None                       | None                 | Almost none                | None                             | None                         |
| Reset method                                  | Automatic                  | Automatic            | External force (manual)    | Automatic                        | Automatic                    |
| Overload detection                            | TG Sensor<br>(option p.28) | Limit switch<br>P47  | TG Sensor<br>(option p.28) | Proximity switch, tachometer P65 | TGA Sensor<br>(option p. 75) |
| Torque or load indicator                      | Yes                        | Yes                  | Yes                        | No                               | Yes                          |
| Exterior                                      |                            |                      |                            |                                  |                              |

The right mechanical type safety mechanism for your particular needs is available. Using the chart below, select the device that is most right for your machines.

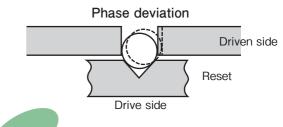

For machinery like positioning and indexing machines that require preciseness.

| One position function |     |  |  |  |
|-----------------------|-----|--|--|--|
| TGX Series            | YES |  |  |  |
| TGM Series            | YES |  |  |  |
| TGB Series            | YES |  |  |  |
| TGZ Series            | YES |  |  |  |
| Torque Limiter        | NO  |  |  |  |

| Resetting preciseness after trip |      |  |  |  |
|----------------------------------|------|--|--|--|
| TGX Series                       | ±10s |  |  |  |
| TGM Series                       | ±10s |  |  |  |
| TGB Series                       | ±20s |  |  |  |
| TGZ Series                       | ±20s |  |  |  |

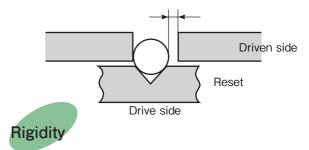
| Backlash (during normal operation) |       |  |  |  |
|------------------------------------|-------|--|--|--|
| TGX Series                         | 0     |  |  |  |
| TGM Series                         | 0     |  |  |  |
| TGB Series                         | ±0.3° |  |  |  |
| TGZ Series                         | ±0.3° |  |  |  |
| Torque Limiter                     | 0     |  |  |  |

| Rigidity   |          |  |  |  |  |
|------------|----------|--|--|--|--|
| TGX Series | Superior |  |  |  |  |
| TGM Series | Regular  |  |  |  |  |
| TGB Series | Regular  |  |  |  |  |
| TGZ Series | Regular  |  |  |  |  |



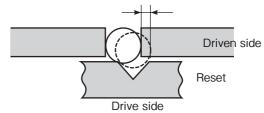

#### One position

Because of its unique construction, the drive and driven sides only mesh in one position. After tripping the Torque Guard resets and meshes in its original position.


#### Reset precision

Phase deviation between drive side and driven side after tripping and resetting again.




#### Backlash

Connecting clearance between drive side and driven side at normal operation.



Rigidity refers to the degree of deforming ability of a solid material.

It is especially important when a system is driven by a servomotor, etc. (It indicates the input and output side's relative rotational deviation.)



| Trip torque repeatability |      |  |  |  |
|---------------------------|------|--|--|--|
| TGX Series                | ±3%  |  |  |  |
| TGM Series                | ±5%  |  |  |  |
| TGB Series                | ±10% |  |  |  |
| TGZ Series                | ±10% |  |  |  |

## For the machine that you want to automatically reset after removing overload after trip

| TGX Series     |           |
|----------------|-----------|
| TGB Series     | Automatic |
| TGM Series     | reset     |
| Torque Limiter |           |

#### For the machine that you want to freely rotate after trip

| TGZ Series | Complete<br>release |
|------------|---------------------|
|------------|---------------------|

## Arbitrarily shutoff the rotary power transmission as an ON-OFF clutch

| TGZ Series | Reset by external force |
|------------|-------------------------|
|------------|-------------------------|

## For the machine that is used in a highly humid environment

| TGM Series    | Sealed       |
|---------------|--------------|
| I GIVI Series | construction |

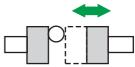
#### Trip torque repeatability

Side-by-side trip torque fluctuation when the trip is repeated.

#### **Automatic** reset

After overload is removed, the overload detection function resets automatically by inching either the drive or driven side.



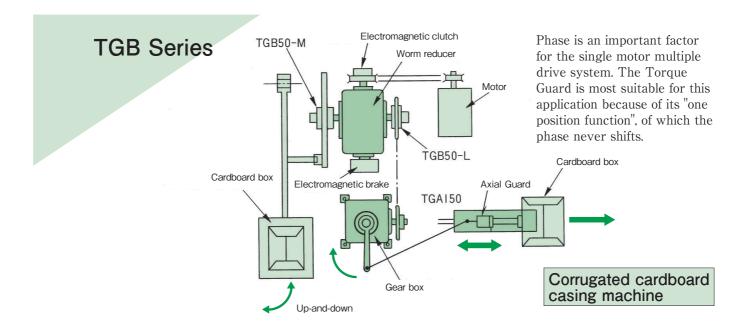

#### Complete release

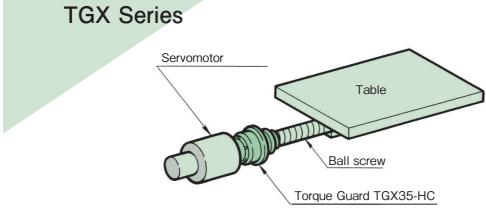
After tripping, this function completely eliminates transmission of the drive side rotation to the driven side. While in the case of an automatic reset mechanism, the overrunning of the drive side after tripping generates reset shock. This complete release function is best suited for a high speed rotation axis.



#### ON-OFF

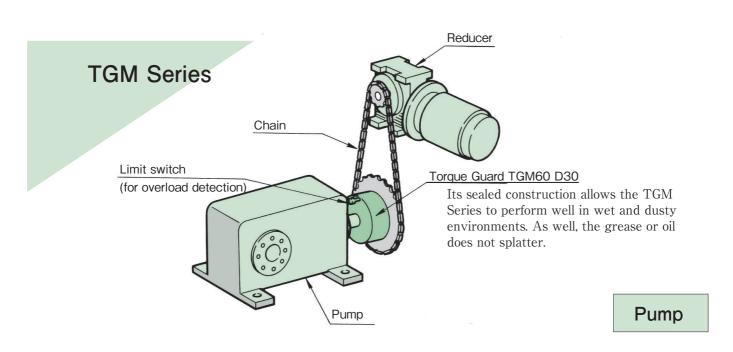
The ON-OFF function. Arbitrarily transmit or shutoff torque by external force.





#### **Sealed Construction**

Sealed construction using O-ring. Under normal usage conditions it is not necessary to refill the grease.



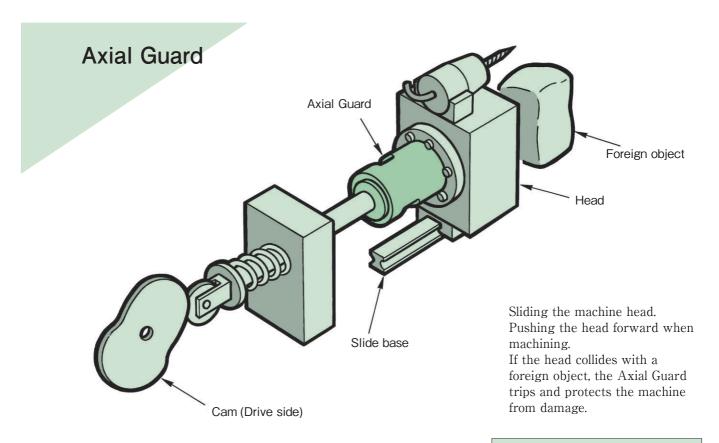







Precise positioning is possible because of its non-backlash and high rigidity characteristics. The TGX Series instantly trips when overload occurs, preventing costly machine damage.

#### Table positioning






Due to hardening of the materials or too many materials entering the machine, there is overload on the screw.

At that time, the Torque Guard trips, protecting the screw portion of the machine from damage. Because of the direct-coupled motor (high speed rotation), after trip, the freely rotating TGZ Series is used.

Extruding machine



#### Specialized machinery

#### Torque Guard TGB Series

#### **Features**

Easy to operate and reasonably priced. This standard model can be used with a broad range of applications.

### Accuracy of consecutive repeated trip torque fluctuations is within ±10%.

Even with repeated trips, the fluctuating trip torque variation is always within  $\pm 10\%$ .

#### Wide variety of sizes available

From 0.294N·m {0.03kgf·m} to 7154N·m {730kgf·m}, 58 sizes are available.

#### **Automatic reset**

After removing the cause of overload, the TGB Series automatically re-engages by rotating the drive side.

#### One position type

This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

#### Simple torque adjustment

By simply turning the adjustment nut (bolts), trip torque can be easily adjusted.

#### Easy to read torque indicator

By using the indicator and torque indicator, set torque can be verified at any time.

#### Standard stock

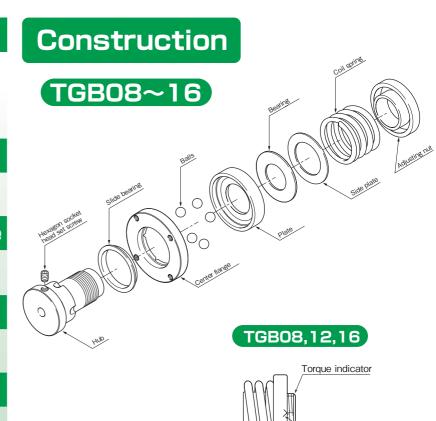
The standard TGB Series are stocked as rough bore products. (Large size TGB90~130 are MTO)

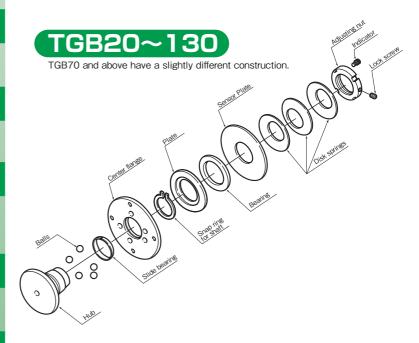
#### Compact and precise

(TGB08~16)

Ideal for use in compact motors, robots, and compact precision machines.

#### Non-backlash


(TGB08~16 Does not include a Torque Guard Coupling.) Because of its special construction there is no backlash.

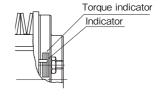

#### Standard type overload detection sensor

Combined with the TG sensor's non-contact type (refer to pages 28, 29), once overload is detected, the motor can be stopped and an alarm signal can be sent (optional).

#### Bore finishing for quick delivery

Finished bore products can be made for quick delivery. (Refer to page 22)

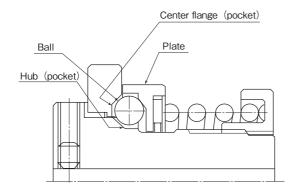





#### TGB20.30.50

## Torque indicator Indicator

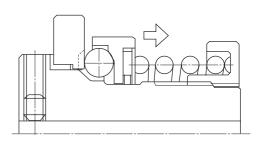
#### TGB70,90,110,130


Indicator



### **Operating principles**

#### TGB08~16

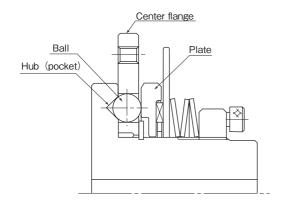

#### During normal operation (engagement)



Torque transmission is carried out using several balls. The non-symmetric arrangement of the balls and pockets allows only one engagement position. As well, there is no backlash due to non-clearance engagement between the retained and pressured balls and pockets.

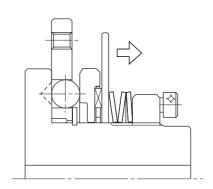
Torque is transmitted from the center flange (pockets)  $\rightarrow$  balls  $\rightarrow$  hub (pockets)  $\rightarrow$  shaft. (As well as the opposite)

#### During overload (trip)




When the TGB Series trips due to overload, the ball pops out of the center flange pocket and it slides between the plate and center flange.

#### TGB20~50

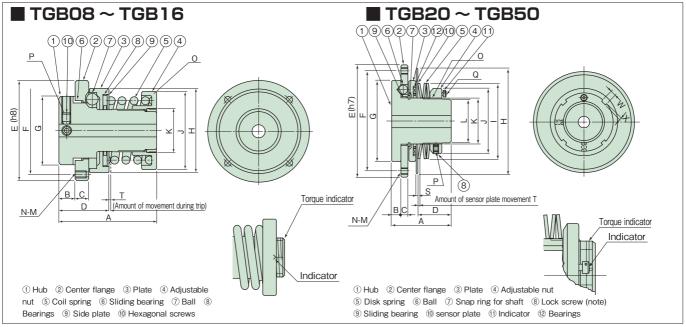

TGB70-130 has the same operating principles.

#### During normal operation (engagement)



Torque is carried out using several balls. The non-symmetric arrangement of balls and pockets allows only one engagement position. Torque is transmitted from the center flange  $\rightarrow$  balls  $\rightarrow$  hub (pockets)  $\rightarrow$  shaft. (As well as the opposite)

#### During overload (trip)




When it trips due to overload, the ball pops out of the hub pocket and rolls between the plate and hub.

When tripping, the rotational portion is entirely received by the bearings, so it rotates lightly and smoothly.

#### Torque Guard

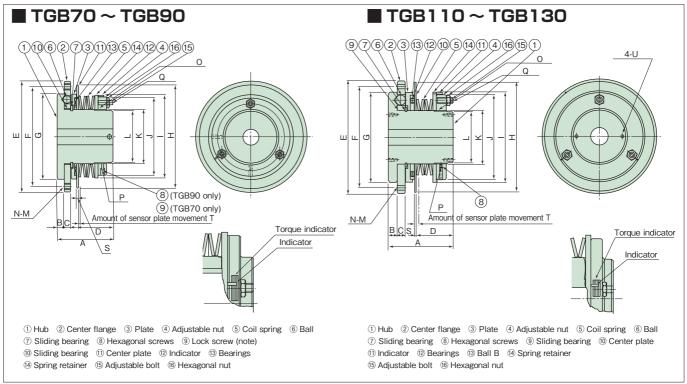
#### Transmissible Capacity/Dimensions Table



Note: One lock screw for fastening the adjusting nut is included with the Torque Guard. After setting to the optimal torque, tighten either lock screw with the torque amount given below.

Lock screw size: M5···3.8N·m[38.7kgf·cm]

Unit: mm


| Model No. | Set torque range<br>N·m{kgf·m} | Maximum<br>r/min | Spring color | %1<br>Rough<br>bore<br>diameter | Minimum<br>bore<br>diameter | Maximum<br>bore<br>diameter | A  | В    | С   | D    | E   | F<br>P.C.D | G   | Н   | I     |
|-----------|--------------------------------|------------------|--------------|---------------------------------|-----------------------------|-----------------------------|----|------|-----|------|-----|------------|-----|-----|-------|
| TGB08-L   | 0.29~ 1.47 {0.03~0.15}         |                  | Yellow       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB08-M   | 0.78~ 2.16 {0.08~0.22}         | 1200             | Blue         | 5                               | 6                           | 8                           | 39 | 6.5  | 5   | 20   | 40  | 34         | 26  | 33  | _     |
| TGB08-H   | 1.17~ 2.94 {0.12~0.3}          |                  | Orange       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB12-L   | 0.68~ 2.94 {0.07~0.3}          |                  | Yellow       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB12-M   | 1.96~ 4.9 { 0.2~0.5}           | 1000             | Blue         | 6                               | 7                           | 12                          | 47 | 8    | 6   | 23.5 | 48  | 40         | 32  | 40  | _     |
| TGB12-H   | 2.94~ 5.88 { 0.3~0.6}          |                  | Orange       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB16-L   | 1.47~ 4.9 {0.15~0.5}           |                  | Yellow       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB16-M   | 2.94~ 7.84 { 0.3~0.8}          | 900              | Blue         | 7                               | 8                           | 16                          | 56 | 8.5  | 8   | 27.7 | 58  | 50         | 39  | 48  | _     |
| TGB16-H   | 5.88~11.76{ 0.6~1.2}           |                  | Orange       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB20-H   | 9.8 ~44 { 1.0~4.5}             | 700              | Orange       | 8                               | 9                           | 20                          | 47 | 7.5  | 5.7 | 25   | 90  | 78         | 62  | 82  | 54    |
| TGB30-L   | 20~54 { 2.0~5.5}               | 500              | Yellow       | 12                              | 14                          | 30                          | 60 | 9.5  | 7   | 33   | 113 | 100        | 82  | 106 | 75    |
| TGB30-H   | 54~167 { 5.5~17}               | 300              | Orange       | 12                              | 14                          | 30                          |    | 7.5  | ,   | 55   | 113 | 100        | 02  | 100 | /5    |
| TGB50-L   | 69~147 { 7.0~15}               |                  | Yellow       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |
| TGB50-M   | 137~412 { 14~42}               | 300              | Blue         | 22                              | 24                          | 50                          | 81 | 14.5 | 8.5 | 44.8 | 160 | 142        | 122 | 150 | 116.7 |
| TGB50-H   | 196~539 { 20~55}               |                  | Orange       |                                 |                             |                             |    |      |     |      |     |            |     |     |       |

| Model No. | J    | K  | L    | М   | N | O screw<br>diameter<br>×<br>pitch | P screw<br>diameter<br>×<br>length | Q screw<br>diameter<br>×<br>length | S | Т   | w | х   | Snap<br>ring<br>size Y | Mass<br>kg<br>%2 | Inertia moment ×10°2kg·m² ※2 | GD²<br>×10²kgf⋅m²<br>※2 |
|-----------|------|----|------|-----|---|-----------------------------------|------------------------------------|------------------------------------|---|-----|---|-----|------------------------|------------------|------------------------------|-------------------------|
| TGB08-L   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB08-M   | 29.5 | 15 | _    | M 3 | 3 | M15×1                             | M3× 4                              | _                                  | _ | 0.9 | _ | _   | _                      | 0.14             | 0.0025                       | 0.010                   |
| TGB08-H   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB12-L   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB12-M   | 35   | 20 | _    | M 4 | 3 | M20×1                             | M4× 6                              | _                                  | _ | 1.0 | _ | _   | _                      | 0.24             | 0.0065                       | 0.026                   |
| TGB12-H   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB16-L   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB16-M   | 46   | 25 | _    | M 4 | 3 | M25×1.5                           | M5× 6                              | _                                  | _ | 1.2 | _ | _   | _                      | 0.44             | 0.0180                       | 0.072                   |
| TGB16-H   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB20-H   | 48   | 32 | 30   | M 5 | 4 | M32×1.5                           | M5× 6                              | M4× 8                              | 2 | 1.8 | 5 | 2   | 32                     | 0.9              | 0.058                        | 0.23                    |
| TGB30-L   | 65   | 45 | 42.5 | M 6 | 6 | M45×1.5                           | M5× 6                              | M4×10                              | 2 | 2   | 6 | 2.5 | 45                     | 2.0              | 0.20                         | 0.79                    |
| ТСВЗО-Н   | 33   | 45 | 42.3 | MO  | O | 143∧1.3                           | MI3/ 0                             | W4^ 10                             |   |     | 0 | 2.5 | 45                     | 2.0              | 0.20                         | 0.77                    |
| TGB50-L   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |
| TGB50-M   | 98   | 75 | 70   | M 8 | 6 | M75×2                             | M5×10                              | M4×14                              | 3 | 2.7 | 8 | 3.5 | 75                     | 5.9              | 1.21                         | 4.84                    |
| TGB50-H   |      |    |      |     |   |                                   |                                    |                                    |   |     |   |     |                        |                  |                              |                         |

<sup>%1.</sup> All rough bore products are stock items.

<sup>2.</sup> Mass, inertia moment and  $\mbox{GD}^2$  are based on the bores' maximum diameters.

Line in the second

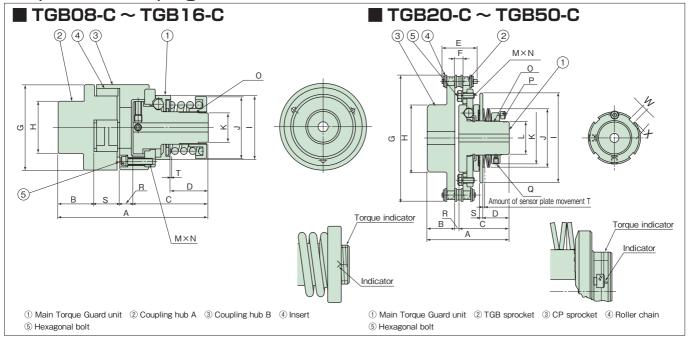


Note: One lock screw for fastening the adjusting nut is included with the Torque Guard. After setting to the optimal torque, tighten the torque with the amount given below. Lock screw size: M5···3.8N·m(38.7kgf·cm)

|           |                                |                  |              |                                 |      |                             |     |      |    |      |                 |            |     | Un  | ıt : mm |
|-----------|--------------------------------|------------------|--------------|---------------------------------|------|-----------------------------|-----|------|----|------|-----------------|------------|-----|-----|---------|
| Model No. | Set torque range<br>N·m{kgf-m} | Maximum<br>r/min | Spring color | %1<br>Rough<br>bore<br>diameter | bore | Maximum<br>bore<br>diameter | Α   | В    | С  | D    | E<br>h <i>7</i> | F<br>P.C.D | G   | Н   | I       |
| TGB 70-H  | 294~1080 { 30~110}             | 160              | Orange       | 32                              | 35   | 70                          | 110 | 14.5 | 12 | 68.5 | 220             | 200        | 170 | 205 | 166     |
| TGB 90-L  | 441~1320 { 45~135}             | 120              | Yellow       | 42                              | 44   | 90                          | 157 | 25   | 22 | 88.6 | 295             | 265        | 236 | 290 | 213     |
| TGB 90-H  | 931~3140 { 95~320}             | 120              | Orange       | 42                              | 44   | 70                          | 137 | 23   | 22 | 00.0 | 273             | 203        | 230 | 270 | 213     |
| TGB110-L  | 686~1960 { 70~200}             | 100              | Yellow       | 52                              | 54   | 110                         | 195 | 30   | 25 | 105  | 355             | 325        | 287 | 345 | 278     |
| TGB110-H  | 1570~5100 {160~520}            | 100              | Orange       | 32                              | 34   | 110                         | 173 | 30   | 23 | 103  | 333             | 323        | 207 | 343 | 270     |
| TGB130-L  | 1176~3038 {120~310}            | 80               | Yellow       | 60                              | 62   | 130                         | 230 | 35   | 27 | 130  | 400             | 360        | 319 | 390 | 316     |
| TGB130-H  | 2650~7154 {270~730}            | 80               | Orange       |                                 | 32   | 130                         | 230 | 33   | 2/ | 130  | 400             | 300        | 317 | 370 | 310     |

| Model No.            | J   | K   | L   | М   | N | O screw<br>diameter<br>×<br>pitch | P screw<br>diameter<br>×<br>length | Q screw<br>diameter<br>×<br>length | S   | Т   | U screw<br>diameter<br>×<br>length | Snap<br>ring<br>size Y | Mass<br>kg<br>※2 | Inertia moment ×10°2kg·m² %2 | GD <sup>2</sup><br>×10 <sup>-2</sup> kgf·m <sup>2</sup><br>※2 |
|----------------------|-----|-----|-----|-----|---|-----------------------------------|------------------------------------|------------------------------------|-----|-----|------------------------------------|------------------------|------------------|------------------------------|---------------------------------------------------------------|
| TGB 70-H             | 157 | 110 | 106 | M10 | 6 | M110× 2                           | M 5× 10                            | M10× 28                            | 3   | 3.3 | _                                  | 110                    | 17.0             | 6.3                          | 25.2                                                          |
| TGB 90-L<br>TGB 90-H | 203 | 130 | 124 | M12 | 8 | M130× 2                           | M10× 20                            | M16× 35                            | 5.5 | 5.4 | M 8× 16                            | 130                    | 37.5             | 33.8                         | 135                                                           |
| TGB110-L<br>TGB110-H | 266 | 160 | 155 | M16 | 6 | M160× 3                           | M12× 20                            | M16× 45                            | 7   | 6   | M10× 20                            | 160                    | 69.6             | 91                           | 364                                                           |
| TGB130-L<br>TGB130-H | 304 | 190 | 184 | M16 | 8 | M190× 3                           | M16× 30                            | M 20× 60                           | 7   | 6.6 | M12× 24                            | 190                    | 102              | 167                          | 668                                                           |

<sup>\$1</sup>. The TGB70 is a rough bore stock item. TGB90-130 are MTO.


#### Model No. Rough Bore Product Model No. TGB 50 - H -40 J-25 **TGB 50 - H** Set torque value is displayed as a gravitational system of units 245N·m {25kgf·m} Size Series Size Series (Only when set torque is indicated) - Spring strength Key way L=weak spring (J=new JIS standards, E=old JIS 2 type) M=medium spring Finished bore measurements (only when finished bore is indicated) H=strong spring Spring strength L=weak spring M=medium spring H=strong spring

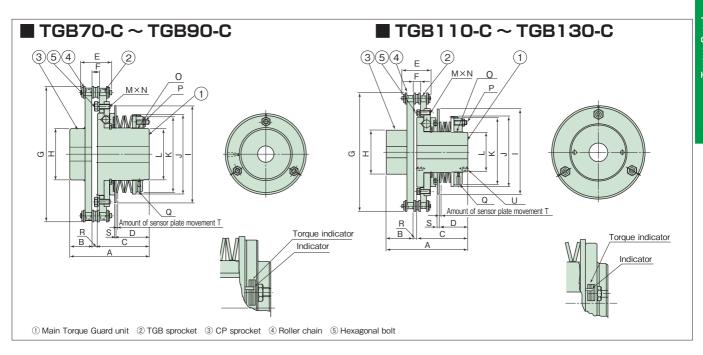
<sup>2.</sup> Mass, inertia moment and  $GD^2$  are based on the bores' maximum diameters.



#### Transmissible Capacity/Dimensions Table

#### **Torque Guard Coupling**




Unit: mm

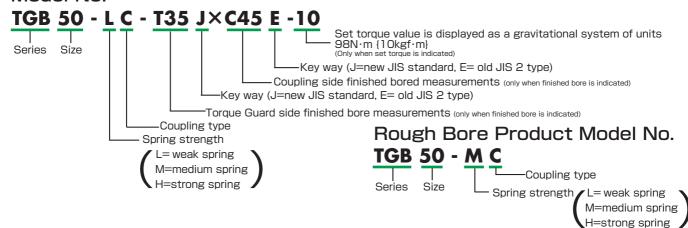
| AA LINI   | Set torque range      | Maximum          | c · 1        | Tore                    | que Guo               | ard                   |                             | Couplin               | ng                    | Α   | В    | С  | D    | Е    | F    | G     | Н  |     |
|-----------|-----------------------|------------------|--------------|-------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-----|------|----|------|------|------|-------|----|-----|
| Model No. | N·m{kgf-m}            | Maximum<br>r/min | Spring color | Rough bore diameter **1 | Minimum bore diameter | Maximum bore diameter | Rough bore<br>diameter ** 1 | Minimum bore diameter | Maximum bore diameter | А   | D    | C  |      |      | Г    | G     | П  | '   |
| TGB08-LC  | 0.29~1.47 {0.03~0.15} |                  | Yellow       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB08-MC  | 0.78~2.16 {0.08~0.22} | 1200             | Blue         | 5                       | 6                     | 8                     | _                           | _                     | 15                    | 80  | 20.6 | 39 | 19   | _    | _    | 44.5  | 24 | 33  |
| TGB08-HC  | 1.17~2.94 {0.12~0.3}  |                  | Orange       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB12-LC  | 0.68~2.94 {0.07~0.3}  |                  | Yellow       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB12-MC  | 1.96~4.9 { 0.2~0.5}   | 1000             | Blue         | 6                       | 7                     | 12                    | _                           | _                     | 20                    | 88  | 19.9 | 47 | 23.5 | _    | _    | 53.6  | 32 | 40  |
| TGB12-HC  | 2.94~5.88 { 0.3~0.6}  |                  | Orange       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB16-LC  | 1.47~4.9 {0.15~0.5}   |                  | Yellow       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB16-MC  | 2.94~7.84 { 0.3~0.8}  | 900              | Blue         | 7                       | 8                     | 16                    | _                           | _                     | 25                    | 112 | 27   | 56 | 28.3 | _    | _    | 64.3  | 38 | 48  |
| TGB16-HC  | 5.88~11.76 { 0.6~1.2} |                  | Orange       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB20-HC  | 9.8 ~44 { 1.0~4.5}    | 700              | Orange       | 8                       | 9                     | 20                    | 12.5                        | 14                    | 42                    | 76  | 25   | 47 | 25   | 32.6 | 7.4  | 117.4 | 63 | 82  |
| TGB30-LC  | 20~54 { 2.0~5.5}      | 500              | Yellow       | 12                      | 14                    | 30                    | 18                          | 20                    | 48                    | 93  | 20   | 60 | 33   | 40.5 | 9.7  | 146.7 | 73 | 106 |
| TGB30-HC  | 54~167 { 5.5~17}      | 300              | Orange       | 12                      | 14                    | 30                    | 10                          | 20                    | 40                    | 93  | 20   | 00 | 33   | 40.5 | 9.7  | 140./ | /3 | 100 |
| TGB50-LC  | 69~147 { 7.0~15}      |                  | Yellow       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |
| TGB50-MC  | 137~412 { 14~42}      | 300              | Blue         | 22                      | 24                    | 50                    | 18                          | 20                    | 55                    | 126 | 40   | 81 | 44.8 | 51.0 | 11.6 | 200.3 | 83 | 150 |
| TGB50-HC  | 196~539 { 20~55}      | 1                | Orange       |                         |                       |                       |                             |                       |                       |     |      |    |      |      |      |       |    |     |

| Model No. | J     | K  | L    | M×N×No.<br>of pieces    | O screw<br>diameter<br>×<br>pitch | P screw<br>diameter<br>×<br>length | Q screw<br>diameter<br>×<br>length | R    | S    | Т   | W | х   | Coupling<br>model No.<br>or sprocket | Mass<br>kg<br>※2 | Inertia moment<br>×10 <sup>-2</sup> kg·m <sup>2</sup><br>※2 | GD <sup>2</sup><br>×10 <sup>-2</sup> kgf·m <sup>2</sup><br>※2 |
|-----------|-------|----|------|-------------------------|-----------------------------------|------------------------------------|------------------------------------|------|------|-----|---|-----|--------------------------------------|------------------|-------------------------------------------------------------|---------------------------------------------------------------|
| TGB08-LC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB08-MC  | 29.5  | 15 | _    | $M3\times12\ell\times3$ | M15×1                             | _                                  | _                                  | 7.2  | 13.2 | 0.9 | _ | _   | L075A                                | 0.235            | 0.0050                                                      | 0.020                                                         |
| TGB08-HC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB12-LC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB12-MC  | 37    | 20 | _    | $M4\times16\ell\times3$ | M20×1                             | _                                  | _                                  | 7.9  | 13.2 | 1   | _ | _   | L090A                                | 0.38             | 0.0123                                                      | 0.049                                                         |
| TGB12-HC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB16-LC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB16-MC  | 46    | 25 | _    | $M4\times20\ell\times3$ | M25×1.5                           | _                                  | _                                  | 10.2 | 18.8 | 1.2 | _ | _   | L100A                                | 0.673            | 0.0324                                                      | 0.129                                                         |
| TGB16-HC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB20-HC  | 54    | 48 | 30   | M5×12ℓ×4                | M32×1.5                           | M4× 8                              | M5× 6                              | 4    | 2    | 1.8 | 5 | 2   | RS40-26                              | 2.5              | 0.313                                                       | 1.25                                                          |
| TGB30-LC  | 75    | 65 | 42.5 | M6×16l×6                | M45×1.5                           | M4×10                              | M5× 6                              | 5    | 2    | 2   | 6 | 2.5 | RS50-26                              | 4.8              | 0.948                                                       | 3.79                                                          |
| TGB30-HC  | /3    | 00 | 42.3 | MO~102~0                | 143/1.3                           | 1414/10                            | 1412\\                             | ٦    |      |     | J | 2.5 | K330-20                              | 4.0              | 0.740                                                       | 3./ 7                                                         |
| TGB50-LC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |
| TGB50-MC  | 116.7 | 98 | 70   | M8×20ℓ×6                | M75×2                             | M4×14                              | M5×10                              | 5    | 3    | 2.7 | 8 | 3.5 | RS60-30                              | 12.2             | 4.43                                                        | 17.7                                                          |
| TGB50-HC  |       |    |      |                         |                                   |                                    |                                    |      |      |     |   |     |                                      |                  |                                                             |                                                               |

<sup>\*1.</sup> All rough bore products are stock items.

<sup>2.</sup> Mass, inertia moment and  $\mbox{GD}^2$  are based on the bores' maximum diameters.

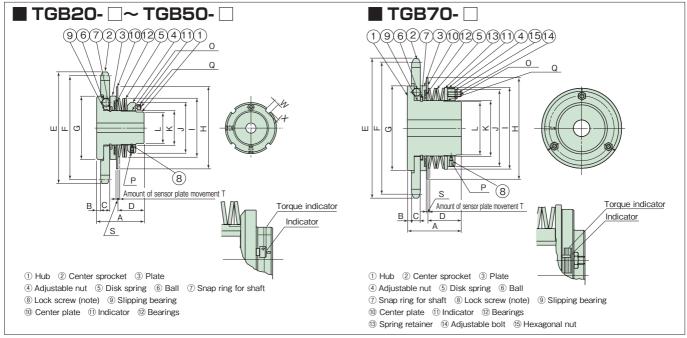



Unit: mm

|   | Model No. | Set torque range<br>N·m{kgf-m} | Maximum r/min | Spring color | Toro | que Gue<br>Minimum bore | ard<br>Maximum bore | Rough bore | Couplin | Maximum bore | Α   | В   | С   | D    | Е     | F    | G     | Н   | 1   |
|---|-----------|--------------------------------|---------------|--------------|------|-------------------------|---------------------|------------|---------|--------------|-----|-----|-----|------|-------|------|-------|-----|-----|
|   | TGB 70-HC | 294~1080 { 30~110}             |               | Orange       | 32   | 35                      | 70                  | 28         | 30      | 75           | 165 | 45  | 110 | 68.5 | 64.8  | 15.3 | 283.2 | 107 | 205 |
|   | TGB 90-LC | 441~1320 { 45~135}             | 120           | Yellow       | 42   | 44                      | 90                  | 33         | 35      | 103          | 242 | 80  | 157 | 88.6 | 70 5  | 10 2 | 394.4 | 147 | 290 |
| П | TGB 90-HC | 931~3140 { 95~320}             | 120           | Orange       |      | 44                      | 70                  | 33         | 33      | 103          | 242 | 80  | 13/ | 00.0 | 76.5  | 10.2 | 374.4 | 14/ | 270 |
|   | TGB110-LC | 686~1960 { 70~200}             | 100           | Yellow       | 52   | 54                      | 110                 | 38         | 40      | 113          | 303 | 100 | 195 | 105  | 00.2  | 21.0 | 473.4 | 157 | 345 |
| П | TGB110-HC | 1570~5100 {160~520}            | 100           | Orange       | 32   | 34                      | 110                 | 30         | 40      | 113          | 303 | 100 | 173 | 103  | 77.2  | 21.7 | 4/3.4 | 13/ | 343 |
|   | TGB130-LC | 1180~3038 {120~310}            | 80            | Yellow       | 60   | 62                      | 130                 | 53         | 55      | 145          | 365 | 120 | 230 | 130  | 127.3 | 20 1 | 534.2 | 197 | 390 |
| П | TGB130-HC | 2650~7154 {270~730}            | 00            | Orange       | 00   | 02                      | 130                 | 55         | 55      | 145          | 303 | 120 | 230 | 130  | 127.3 | 27.1 | 334.2 | 17/ | 370 |

| Model No.              | J   | К   | L   | M×N×No.<br>of pieces | O screw<br>diameter<br>×<br>pitch | P screw<br>diameter<br>×<br>length | Q screw<br>diameter<br>×<br>length | R  | S   | Т   | U screw<br>diameter<br>×<br>length | Sprocket | Mass<br>kg<br>※1 | Inertia moment<br>×10°2kg·m²<br>※1 | GD <sup>2</sup><br>×10 <sup>-2</sup> kgf·m <sup>2</sup><br>※1 |
|------------------------|-----|-----|-----|----------------------|-----------------------------------|------------------------------------|------------------------------------|----|-----|-----|------------------------------------|----------|------------------|------------------------------------|---------------------------------------------------------------|
| TGB 70-HC              | 166 | 157 | 106 | M10×25l×6            | M110×2                            | M10×28                             | M 5×10                             | 10 | 3   | 3.3 | _                                  | RS80-32  | 32.0             | 22.43                              | 89.7                                                          |
| TGB 90-LC              | 213 | 203 | 124 | M12×35&×8            | M130×2                            | M16×35                             | M10×20                             | 5  | 5.5 | 5.4 | M 8×16                             | RS100-36 | 71.1             | 117.32                             | 469.29                                                        |
| TGB110-LC<br>TGB110-HC | 278 | 266 | 155 | M16×45ℓ×6            | M160×3                            | M16×45                             | M12×20                             | 8  | 7   | 6   | M10×20                             | RS120-36 | 130.5            | 314.15                             | 1256.61                                                       |
| TGB130-LC<br>TGB130-HC | 316 | 304 | 184 | M16×50ℓ×8            | M190×3                            | M20×60                             | M16×30                             | 15 | 7   | 6.6 | M12×24                             | RS160-30 | 202.3            | 632.66                             | 2530.63                                                       |

<sup>%1.</sup> Mass, inertia moment and GD<sup>2</sup> are based on the bores' maximum diameters.


#### Model No.





#### Transmissible Capacity/Dimensions Table

#### With Sprocket TGB



Note: One lock screw for fastening the adjusting nut is included with the Torque Guard. After setting to the optimal torque, tighten the torque with the amount given below. Lock screw size: M5···3.8N·m[38.7kgf·cm] M8···16N·m[163kgf·cm]

Unit: mm

| Model No. | Set torque range<br>N·m{kgf-m} | Maximum<br>r/min | Sprocket specifications | Spring<br>color | Rough<br>bore<br>diameter | Minimum<br>bore<br>diameter | Maximum<br>bore<br>diameter | А   | В    | С    | D    | E   | F<br>P.C.D | G   | Н   | I     |
|-----------|--------------------------------|------------------|-------------------------|-----------------|---------------------------|-----------------------------|-----------------------------|-----|------|------|------|-----|------------|-----|-----|-------|
| TGB20-H-□ | 9.8~44 { 1.0~4.5}              | 700              | RS40-22T                | Orange          | 8                         | 9                           | 20                          | 47  | 5.9  | 7.2  | 25   | 96  | 89.24      | 62  | 82  | 54    |
| 10020-11- | 7.0 44 ( 1.0 4.5)              | 700              | RS40-27T                | o a a a         | U                         | /                           | 20                          | 4/  | 5.7  | 7.2  | 23   | 116 | 109.4      | 02  | 02  | 54    |
| TGB30-L-□ | 20~54 { 2.0~5.5}               | 500              | RS60-19T                | Yellow          | 12                        | 14                          | 30                          | 60  | 4.8  | 11.6 | 33   | 126 | 115.74     | 82  | 106 | 75    |
| TGB30-H-□ | 54~167 { 5.5~17}               | 300              | RS60-24T                | Orange          | 12                        | 14                          | 30                          | 00  | 4.0  | 11.0 | 33   | 156 | 145.95     | 02  | 100 | /3    |
| TGB50-L-□ | 69~147 { 7.0~15}               |                  | RS80-20T                | Yellow          |                           |                             |                             |     |      |      |      | 176 | 162.37     |     |     |       |
| TGB50-M-□ | 137~412 { 14~42}               | 300              |                         | Blue            | 22                        | 24                          | 50                          | 81  | 8.42 | 14.5 | 44.8 |     |            | 122 | 150 | 116.7 |
| TGB50-H-□ | 196~539 { 20~55}               |                  | RS80-25T                | Orange          |                           |                             |                             |     |      |      |      | 216 | 202.66     |     |     |       |
| TGB70-H-□ | 294~1080{ 30~110}              | 160              | RS100-22T               | Orange          | 32                        | 35                          | 70                          | 110 | 8.9  | 17.5 | 68.5 | 240 | 223.10     | 170 | 205 | 166   |
| 106/0-П-  | 274~1000{ 30~110}              | 100              | RS100-26T               | Crange          | 32                        | 33                          | /0                          | 110 | 0.7  | 17.5 | 00.5 | 281 | 263.40     | 170 | 203 | 100   |

| Model No. | J   | K   | L    | O screw<br>diameter<br>×pitch | P screw<br>diameter<br>×length | Q screw<br>diameter<br>×length | S | T   | W | Х   | Snap<br>ring<br>size Y | Mass<br>kg | Inertia moment<br>×10 <sup>-2</sup> kg·m <sup>2</sup> | $GD^2 \times 10^{-2} \text{kgf} \cdot \text{m}^2$ |
|-----------|-----|-----|------|-------------------------------|--------------------------------|--------------------------------|---|-----|---|-----|------------------------|------------|-------------------------------------------------------|---------------------------------------------------|
| TGB20-H-□ | 48  | 32  | 30   | M 32× 1.5                     | M5× 6                          | M 4× 8                         | 2 | 1.8 | 5 | 2   | 32                     | 0.94       | 0.255                                                 | 0.064                                             |
| 10020 11  | 40  | 02  | 30   | W 02× 1.5                     | 710/                           | M 4/1 0                        | _ | 1.0 |   | _   | 02                     | 1.15       | 0.486                                                 | 0.121                                             |
| TGB30-L-□ | 65  | 45  | 42.5 | M 45× 1.5                     | M5× 6                          | M 4× 10                        | 2 | 2   |   | 2.5 | 45                     | 2.21       | 1.06                                                  | 0.264                                             |
| TGB30-H-□ | 05  | 45  | 42.5 | M 45^ 1.5                     | M3^ 0                          | M 4^ 10                        |   |     | 6 | 2.5 | 45                     | 2.78       | 2.07                                                  | 0.517                                             |
| TGB50-L-□ |     |     |      |                               |                                |                                |   |     |   |     |                        | 6.35       | 6.10                                                  | 1.52                                              |
| TGB50-M-  | 98  | 75  | 70   | M 75× 2                       | M5× 10                         | M 4× 14                        | 3 | 2.7 | 8 | 3.5 | 75                     |            |                                                       |                                                   |
| TGB50-H-□ |     |     |      |                               |                                |                                |   |     |   |     |                        | 7.66       | 10.7                                                  | 2.68                                              |
| ТGВ70-Н-□ | 157 | 110 | 106  | M110× 2                       | M5× 10                         | M10× 28                        | 3 | 3.3 |   |     | 110                    | 17.8       | 29.4                                                  | 7.35                                              |
| 196/0-п-  | 13/ | 110 | 100  | W(110× Z                      | M3^ 10                         | /WIUX 20                       | 3 | 3.3 | _ |     | 110                    | 19.9       | 42.5                                                  | 10.6                                              |

<sup>%1.</sup> All products have a short delivery time.

#### Model No.

#### TGB 50 - H - 08025 A - 50 J -

Series Size Spring strength L=weak spring M=medium spring H=strong spring

Sprocketmodel No. Sprocket mounting method A = Adapter

B = External

No mark = Central

Set torque value is displayed as a gravitational system of units 294N·m{30kgf·m}

Key way

(J=new JIS standard, E= old JIS 2 type) Finished bore measurements

#### Sprocket Indication Method

| Model No. | Sprocket specifications | Indication of Model No. |
|-----------|-------------------------|-------------------------|
| TGB20     | RS40-22T                | 04022                   |
| 10620     | RS40-27T                | 04027                   |
| TORSO     | RS60-19T                | 06019                   |
| TGB30     | RS60-24T                | 06024                   |
| TGB50     | RS80-20T                | 08020                   |
| 10650     | RS80-25T                | 08025                   |
| TCD70     | RS100-22T               | 10022                   |
| TGB70     | RS100-26T               | 10026                   |

<sup>2.</sup> Specify the preferable sprocket size.

<sup>3.</sup> Mass, inertia moment and GD<sup>2</sup> are based on the bores' maximum diameters.

<sup>4.</sup> Sprocket specifications go in the box at the end of the model number. As well, refer to the below chart for Model No.



#### Finished Bore Torque Guard TGB/Torque Guard Coupling TGB-C

#### Finished bore products have a short delivery time

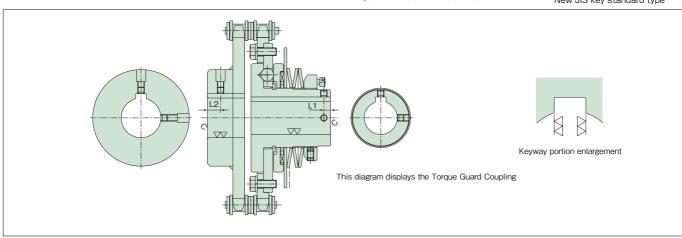
#### ■ Bore/finished keyway

TGB20-TGB70 and TGB20-C-TGB70-C finished bore is standard

#### ■ Finished Bore Measurements Chart

Unit: mm

| Torque G               | Juard TGB                       | Finished bor                                                                                                              | re dimensions                                                      |
|------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Torque Guard Model No. | Torque Guard Coupling Model No. | Torque Guard side                                                                                                         | Coupling side (Torque Guard Coupling only)                         |
| TGB20                  | TGB20-C                         | 9,10,11,12,14,15,16,17,18,19,20                                                                                           | 14,15,16,17,18,19,20,22,24,25,28,29,<br>30,32,33,35,36,38,40,42    |
| TGB30                  | тдвзо-с                         | 14,15,16,17,18,19,20,22,24,25,28,<br>29,30                                                                                | 20,22,24,25,28,29,30,32,33,35,36,38,<br>40,42,43,45,46,48          |
| TGB50                  | TGB50-C                         | 24,25,28,29,30,32,33,35,36,38,40,<br>42,43,45,46,48,50                                                                    | 20,22,24,25,28,29,30,32,33,35,36,38,<br>40,42,43,45,46,48,50,52,55 |
| TGB70                  | TGB70-C                         | 35,36,38,40,42,43,45,46,48,50,52,55,<br>56,57,60,63,65,70 30,32,33,35,36,38,40,42,50,50,50,50,50,50,50,50,50,50,50,50,50, |                                                                    |
| Delive                 | Delivery time                   |                                                                                                                           | weeks by sea                                                       |


#### Model No.

**Torque Guard** 



**Torque Guard Coupling** 





| Torque Guard TGB |                       | Torque G                              | uard Side | Coupling Side<br>(Torque Guard Coupling only) |         |                          |
|------------------|-----------------------|---------------------------------------|-----------|-----------------------------------------------|---------|--------------------------|
|                  | que Guard<br>odel No. | Torque Guard<br>Coupling Model<br>No. | Set screw | Set screw position<br>L1                      |         | Set screw position<br>L2 |
| 1                | rGB20                 | TGB20-C                               | 2-M4× 4   | 4                                             | 2-M4× 4 | 8                        |
| 1                | rGB30                 | TGB30-C                               | 2-M5× 5   | 5                                             | 2-M5× 5 | 10                       |
| 1                | rGB50                 | TGB50-C                               | 2-M6× 6   | 6                                             | 2-M6× 6 | 12                       |
| T                | IGB70                 | TGB70-C                               | 2-M8×12   | 6                                             | 2-M8×12 | 15                       |

<sup>1.</sup> Set screws are located at 2 positions, on the keyway and  $90^\circ\,\,$  CW from it.

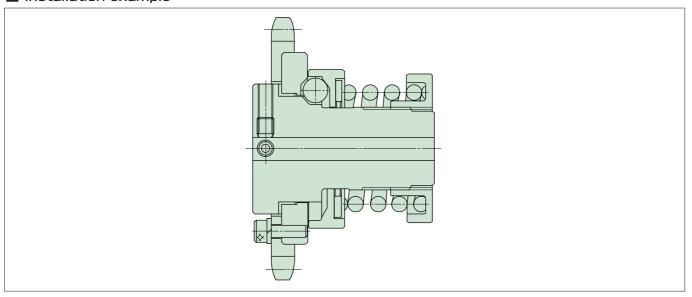
#### ■ Bore Diameter and Keyway Specifications

- Bore diamter tolerance is as follows:
  - $\phi$  18 and below…0  $\sim$  +0.021mm  $\phi$  19 and above…H7
- · The keyway is new JIS (JIS B 1301-1996) "standard".
- · Set screws are included in the delivery

| Bore diameter       | Chamfer dimensions |
|---------------------|--------------------|
| $\phi$ 25 and below | C0.5               |
| $\phi$ 50 and below | C1                 |
| $\phi$ 51 and above | C1.5               |

#### • Roller chain and sprocket selection

For more information on roller chain and sprocket selection and handling, refer to the TSUBAKI drive chain catalog.


#### Sprocket specifications

Sprockets are hardened.

#### Sprocket lubrication

- · For more information on sprocket lubrication, refer to the TSUBAKI drive chain catalog.
- · If the Torque Guard is lubricated in an oil bath or by the rotary plate or forced pump, there is a possibility that the indicator and name sticker may come off.

#### ■ Installation example



#### Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

#### 1. Setting trip torque

$$\begin{split} T_{\text{\tiny F}} = \ T_{\text{\tiny L}} \times S.F = & \frac{60000 \times P}{2 \, \pi \, \cdot n} \times S.F \ \left| T_{\text{\tiny F}} = \frac{974 \times P}{n} \times S.F \right| \\ T_{\text{\tiny F}} = \ Trip \ torque \quad N \cdot m | kgf \cdot m | \qquad T_{\text{\tiny L}} = Load \ torque \quad N \cdot m | kgf \cdot m | \\ P = \ Transmittance \ power \quad kW \qquad S.F = Service \ factor \\ n = rpm \quad r/min \end{split}$$

- From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1.

| Service factor | Operating conditions                                         |
|----------------|--------------------------------------------------------------|
| 1.25           | In the case of normal start up/stop, intermittent operation  |
| 1.50           | In the case of a heavy shock load or forward-reverse driving |

#### 2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_L + I_t}{I_s} \qquad \left\{ \; K = \frac{GD_L^2 + GD_t^2}{GD_s^2} \; \right\} \qquad Tt = \frac{K \cdot T_S + T_L}{1 + K} \quad Tp = SF \cdot Tt \label{eq:equation:equation:equation}$$

K : Inertia ratio

 $I_s$ : Drive side inertia moment  $(kg \cdot m^2)$ 

 $\{GD_s^2: Drive \ side \ GD^2 \ (kgf \! \cdot \! m^2)\}$ 

I<sub>L</sub> : Load side inertia moment (kg·m²)

 $\{GD_L^2 : Load \ side \ GD^2 \ (kgf \cdot m^2)\}$ 

 $I_t \quad : Torque \; Guard \; inertia \; moment \; (kg \cdot m^2)$ 

 $\{GD_t^2: Torque\ Guard\ GD^2\ (kgf \cdot m^2)\}$ 

T<sub>s</sub> : Motor starting torque (N·m){kgf·m}

 $T_t$ : Torque in Torque Guard during start up  $(N \cdot m)\{kgf \cdot m\}$ 

 $T_{\scriptscriptstyle L} \;\; : \; Load \; torque \; (N \! \cdot \! m) \{kgf \! \cdot \! m\}$ 

 $T_{\scriptscriptstyle P} \;\; : \; Trip \; torque \; (N \cdot m) \{kgf \cdot m\}$ 

S.F : Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD² and torque value.

#### 3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

#### 4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

#### 5. Verifying bore diameter

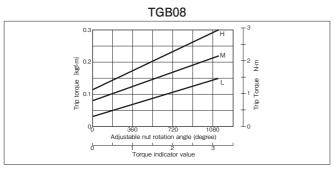
Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

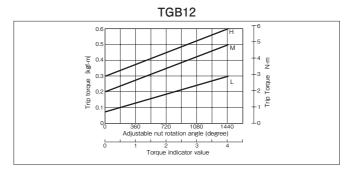
If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

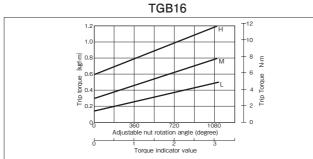
#### 6. Confirming rpm

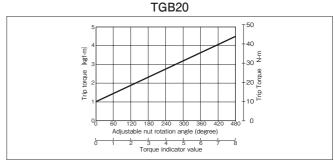
Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.

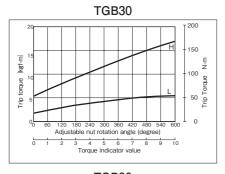
*SAFCON* 

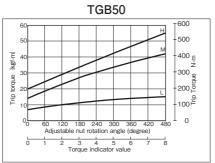

#### Handling

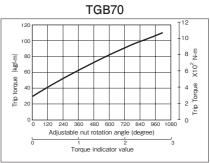

#### 1. Setting trip torque

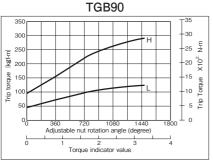

- (1) TGB Torque Guard are all set at the "0" point (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Torque Guard. (Refer to each size in the graphs below)
- (2) For the TGB70  $\sim$  130, loosen the three hexagonal locknuts for adjusting bolts.
  - (The adjusting nuts of TGB08-50 can be turned as is.)
- (3) From the "Tightening Amount Torque Correlation Chart" (below), find the adjusting nut's (bolt) tightening angle equivalent to the predetermined trip torque. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and

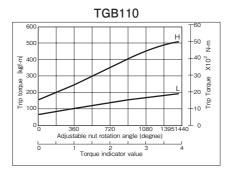

- set at optimum trip torque.
- Each product's trip torque does not always correspond with the value listed in the "Tightening Amount Torque Correlation Chart", so use them only as a rough guide.
- (4) For the TGB20  $\sim$  50, tighten one lock screw for the adjusting nut.
  - For the TGB70  $\sim$  130, use a hexagonal nut to lock it. (The TGB08  $\sim$  16 adjusting nut is locked with a nylon coating.)
- (5) Do not turn the adjusting nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend. (TGB08-16 uses a coil spring)

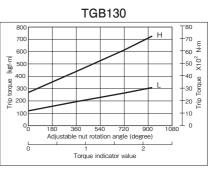

#### 2. Tightening Amount-Torque Correlation Chart



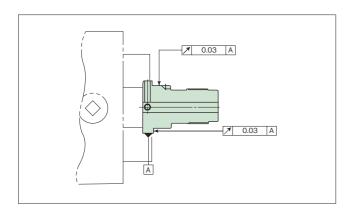









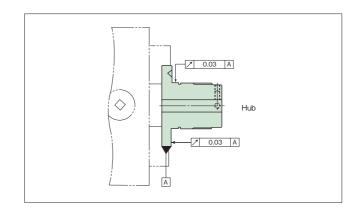


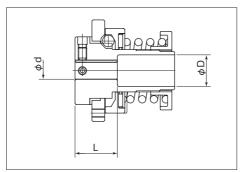

#### 3. Bore finishing

#### TGB08~16

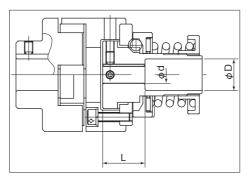
- The hub's materials are made up of a surface-hardened iron based sintered alloy.
- (1) Loosen the adjusting nut and disassemble all components. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion. The hub's material is a surface-hardened iron based sintered alloy, so we recommend the cutting tool be made of a hard material (JIS 9-20, K-01).
- (3) Keyway machining should be carried out directly below the setscrew tap.
- (4) After bore finishing is completed and you are reassembling the Torque Guard, make sure to coat the ball and bearings with grease.




(5) For bore finishing, refer to the table and drawings below and make stepped bores.


#### • Table of bore lengths

| Model No.        | Bore diameter ( $\phi$ d)               | Bore length<br>(L, mm) | Counterbore diameter (\$\phi\$D) |  |
|------------------|-----------------------------------------|------------------------|----------------------------------|--|
| TGB08<br>TGB08-C | $\phi$ 6 and above $\phi$ 8 and below   | 20 mm                  | φ11                              |  |
| <b>TODIO</b>     | $\phi$ 7 and above less than $\phi$ 10  | 20 mm                  | φ15                              |  |
| TGB12<br>TGB12-C | $\phi$ 10 and above less than $\phi$ 12 | 30 mm                  | φισ                              |  |
|                  | φ12                                     | Total length           | N/A                              |  |
|                  | $\phi$ 8 and above less than $\phi$ 10  | 20 mm                  | φ 15                             |  |
| TGB16            | $\phi$ 10 and above less than $\phi$ 12 | 30 mm                  |                                  |  |
|                  | $\phi$ 12 and above $\phi$ 16 and below | Total length           | N/A                              |  |


#### TGB20~130

- The hub has been thermally refined.
- (1) Loosen the adjusting nut and disassemble all components. Remove both the snap ring and the center plate. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion.
- (3) Keyway finishing should be carried out directly below the torque indicator's gap space.
- (4) Tapping for the set screw should be machined at the torque indicator's space and at 90° phasing from it. This tapping should be on the torque indicator.
- (5) After bore finishing is completed and you are reassembling the Torque Guard, make sure to coat the ball and bearings with grease.





TGB08 ~ 16



TGB08C ~ 16C



#### Handling

#### 4. Resetting

As it is an automatic reset system, just re-starting the drive side can automatically reset it.

- (1) When the Torque Guard trips due to overload, stop the rotation and remove the cause of the overload.
- (2) When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor.
- ⚠ To avoid injury, do not reset the Torque Guard by hand.
- (3) A distinct clicking sound is made when the ball settles in its pocket.

#### Drive member selection and manufacture

A sprocket, gear and pulley can be installed in the Torque Guard to act as the drive member (center member). When selecting and manufacturing a drive member, refer to the precautions listed below.

(1) Use the outer diameter of the center flange as the spigot facing, and fix the drive member with bolts.

Verify the diameter of the Torque Guard's spigot facing with that of the drive member.

Each spigot is as listed in the chart below.

| Jnit: mm |  |
|----------|--|
|          |  |

| Model No.   | Spigot diameter | Model No.   | Spigot diameter |
|-------------|-----------------|-------------|-----------------|
| TGB08-L,M,H | 40 (h8)         | TGB50-L,M,H | 160 (h7)        |
| TGB12-L,M,H | 48 (h8)         | TGB70-H     | 220 (h7)        |
| TGB16-L,M,H | 58 (h8)         | TGB90-L,H   | 295 (h7)        |
| TGB20-H     | 90 (h7)         | TGB110-L,H  | 355 (h7)        |
| TGB30-L,H   | 113 (h7)        | TGB130-L,H  | 400 (h7)        |

(2) Center flange installation

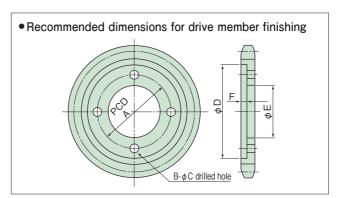
#### · TGB08 ~ 16

The center flange's installation tap hole is penetrated. If the bolt's length is longer than the center flange, it will make contact with the plate. Make sure it does not stick out on the plate side.

#### $\cdot$ TGB20 $\sim$ 130

The center flange's installation tap hole is penetrated. If the the bolt's length is too long there may be contact with the sensor plate.

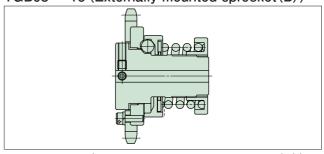
The recommended bolt screw lengths are listed in the chart below.


Unit: mm

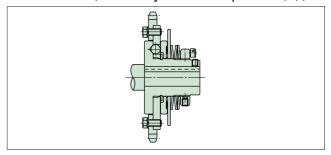
| Model No.   | Bolt screw length | Model No.   | Bolt screw length |
|-------------|-------------------|-------------|-------------------|
| TGB08-L,M,H | 4                 | TGB50-L,M,H | 9~11              |
| TGB12-L,M,H | 5                 | TGB70-H     | 13 ~ 15           |
| TGB16-L,M,H | 7                 | TGB90-L,H   | 23 ~ 25           |
| TGB20-H     | 6 ~ 7             | TGB110-L,H  | 26 ~ 28           |
| TGB30-L,H   | 8 ~ 10            | TGB130-L,H  | 28 ~ 30           |

(3) Refer to the chart below for drive member bolt diameters (JIS B1001-1985).

#### • Bolt bore diameter JIS B1001 - 1985


| Boil boile di          | anietei 313 b 1001 1303 |     |     |     |   |    |      | Unit: mm |  |  |
|------------------------|-------------------------|-----|-----|-----|---|----|------|----------|--|--|
| Nominal screw diameter | 3                       | 4   | 5   | 6   | 8 | 10 | 12   | 16       |  |  |
| Bolt bore diameter     | 3.4                     | 4.5 | 5.5 | 6.6 | 9 | 11 | 13.5 | 17.5     |  |  |




| Series name | Drive member finishing dimensions |   |      |                   |     |   |  |  |  |
|-------------|-----------------------------------|---|------|-------------------|-----|---|--|--|--|
| Series name | Α                                 | В | С    | D                 | Е   | F |  |  |  |
| TGB08-L,M,H | 34                                | 3 | 3.4  | 40 <sub>H7</sub>  | 28  | 3 |  |  |  |
| TGB12-L,M,H | 40                                | 3 | 4.5  | 48 <sub>H7</sub>  | 33  | 3 |  |  |  |
| TGB16-L,M,H | 50                                | 3 | 4.5  | 58н7              | 41  | 3 |  |  |  |
| TGB20-H     | 78                                | 4 | 5.5  | 90 <sub>H7</sub>  | 64  | 3 |  |  |  |
| TGB30-L,H   | 100                               | 6 | 6.6  | 113н7             | 84  | 4 |  |  |  |
| TGB50-L,M,H | 142                               | 6 | 9.0  | 160 <sub>H7</sub> | 124 | 5 |  |  |  |
| TGB70-H     | 200                               | 6 | 11   | 220н7             | 172 | 5 |  |  |  |
| TGB90-L,H   | 265                               | 8 | 13.5 | 295н8             | 240 | 5 |  |  |  |
| TGB110-L,H  | 325                               | 6 | 17.5 | 355н8             | 292 | 5 |  |  |  |
| TGB130-L,H  | 360                               | 8 | 17.5 | 400 <sub>H8</sub> | 325 | 5 |  |  |  |

#### Installation example

TGB08 ~ 16 (Externally-mounted sprocket(B))



TGB20 ~ 50 (Externally-mounted sprocket (B))





#### • Usable sprocket minimum number of teeth

| Sprocket<br>Model No.<br>TGB size | RS25 | RS35 | RS41 | RS40    | RS50    | RS60    | RS80    | RS100 | RS120   | RS140 | RS160 |
|-----------------------------------|------|------|------|---------|---------|---------|---------|-------|---------|-------|-------|
| TGB08-L,M,H                       | (24) | (17) | (14) | 14      | 12      | 13 (10) |         |       |         |       |       |
| TGB12-L,M,H                       | (28) | (20) | (16) | 16      | 13      | 13 (11) |         |       |         |       |       |
| TGB16-L,M,H                       | (32) | (23) | (18) | 18      | 15      | 14      |         |       |         |       |       |
| TGB20-H                           | (48) | (34) | (26) | 26      | 22      | 19      | 15      | 13    | 13 (11) |       |       |
| TGB30-L,H                         | (60) | (41) | (32) | 32      | 26      | 22      | 18      | 15    | 13      |       |       |
| TGB50-L,M,H                       |      | (57) | (43) | 45 (43) | 35      | 30      | 24      | 20    | 17      |       |       |
| тGB70-Н                           |      |      | (58) | 60 (58) | 48 (47) | 40      | 32 (31) | 26    | 24 (22) |       |       |
| TGB90-L,H                         |      |      |      |         | 62      | 52      | 40      | 33    | 28      | 25    | 22    |
| TGB110-L,H                        |      |      |      |         | 74      | 62      | 48      | 39    | 33      | 29    | 26    |
| TGB130-L,H                        |      |      |      |         | 83      | 70      | 53      | 43    | 37      | 32    | 29    |

<sup>\*</sup> The teeth number in parentheses are not standard A Type sprockets.

#### Maintenance

#### 1. Torque Guard (TGB)

Lightly coat the balls and bearings with grease once per year or every 1,000 trips.

#### Grease

| Exxon Mobil | Showa Shell            | Idemitsu                        | JX Nippon Oil & Enargy | Cosmo Oil                 |
|-------------|------------------------|---------------------------------|------------------------|---------------------------|
| Mobilux EP2 | Alvania<br>EP Grease 2 | Daphny<br>Eponex Grease<br>EP 2 | Epinoc Grease AP(N)2   | Cosmo Dynamax EP Grease 2 |

#### 2. Coupling portion (TGB20-C ~ TGB130-C)

Coat the roller chain and sprocket with grease once per month.
 Use the same grease for the Torque Guard.

#### 3. Sprocket portion

- · For more information on sprocket and roller chain maintenance, refer to TSUBAKI drive chain catalog.
- If operating with a sprocket and roller chain for a long period of time, even if the trip frequency and number of times is very low, it is possible for the sprocket to wear. Inspect the sprocket for wear on a regular basis. Refer to the TSUBAKI drive chain catalog for inspection procedures.

### Lock screw/tightening torque reference chart

| Hexagon socket head screw | Tightening torque N·m{kgf·cm} |
|---------------------------|-------------------------------|
| M5                        | 3.8 {38.7}                    |
| M8                        | 16 {163}                      |

#### Precautions:

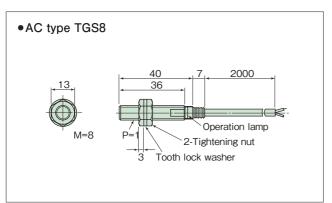
When re-tightening the lock screws, make sure to take the following

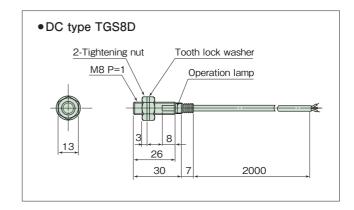
- Confirm that the plug tip has not been removed. If a lock screw is used
  with a tipless plug, the hub's thread may be damaged or the hub's pocket
  may get jammed.
- Confirm that the plug's tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- \* If 1. or 2. is found to be the case, exchange the damaged parts with new ones.

Make sure to use a sprocket that has a one size larger number of teeth.

\*\* The above are the smallest possible installable sprockets. Sprocket transmissible power is not considered,

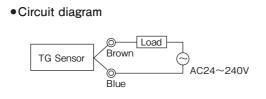
so refer to TSUBAKI drive chain catalog for more information on sprocket selection and handling


#### *SAFCON*


#### TG Sensor

The TG Sensor is a Torque Guard specific proximity switch system overload detecting sensor. After detecting Torque Guard overload, the motor can be stopped and the alarm can be signaled. It is of course possible to install the TG Sensor on other series' and sizes as well.

|                       |                             | AC type                                                                                | DC type                                            |  |  |  |
|-----------------------|-----------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Model no.             |                             | TGS8                                                                                   | TGS8D                                              |  |  |  |
| Power                 | Rating                      | AC24 ~ 240V                                                                            | DC12~24V                                           |  |  |  |
| supply<br>voltage     | Range to be used            | AC20 ~ 264V (50/60Hz)                                                                  | DC10~30V                                           |  |  |  |
| Current               | consumption                 | Less than 1.7mA (at AC200V)                                                            | Less than 13mA                                     |  |  |  |
| Control output (op    | ening and closing capacity) | 5 ~ 100mA                                                                              | Max. 200mA                                         |  |  |  |
| Indic                 | ator lamp                   | Operation                                                                              | indicator                                          |  |  |  |
| Ambient ope           | erating temperature         | -25 ∼ +70°C (d                                                                         | loes not freeze)                                   |  |  |  |
| Ambient op            | perating humidity           | 35 ~ 95%RH                                                                             |                                                    |  |  |  |
| Out                   | put form                    | NC (When not detecting the sensor plate, output opening and closing state is displayed |                                                    |  |  |  |
| Operation mode        |                             |                                                                                        | Open collector                                     |  |  |  |
| Insulation resistance |                             | More than 50M $\!\Omega$ (at DC50V megger) In between the energized part and the ca    |                                                    |  |  |  |
| Mass                  |                             | Approx. 45g (                                                                          | with 2m code)                                      |  |  |  |
| Residual voltage      |                             | Refer to characteristic data                                                           | Less than 2.0V (load current 200mA/code length 2m) |  |  |  |


#### **■** Dimensions Diagram

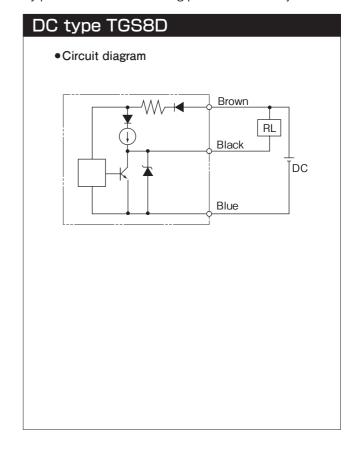




■ TG Sensor Handling \* Do not swing, excessively pull or strike the detecting portion with an object.

#### AC type TGS8

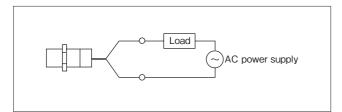



No need to consider the polarity of  $T\,G$  sensor (brown,blue).

#### Precautions for wiring

 Make sure to turn on the power after connecting the load, or the machine will likely be damaged.




 In order to prevent damage due to surge and noise when an electric/power line runs close to the TG sensor code, use a single and separate wiring pipe.



#### ■ Selecting overload and wiring information (AC type for TGS8)

#### Connecting to a power source

Make sure to connect via load. A direct connection will damage the internal elements.



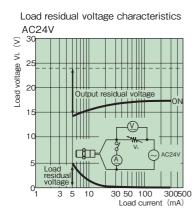
#### • Using a metal pipe to prevent malfunction/damage

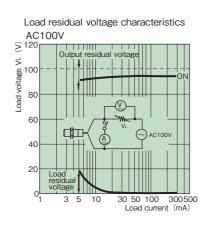
In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

#### Surge protection

The TG Sensor has built-in absorbing circuits, but when the TG Sensor is used near a device such as a motor or arc welder where a large surge occurs, make sure to insert a surge absorber such as a varister in the source.

#### • Influence of consumption (leakage) current


Even when the TG Sensor is OFF, in order to keep the circuits running, a small amount of current flows as current consumption. (Refer to the "Consumption (leakage) Current" graph)


Consequently, because there is a small amount of voltage on the load, it may cause the occurring load to malfunction when resetting. Before using the sensor, confirm that this voltage is less than the load reset voltage. As well, when using the relay as load, be aware that due to the relay's construction when the leakage current is OFF, a buzz will sound.

#### · When power supply voltage is low

When power supply voltage is smaller than AC48V and load current is less than 10mA, the output residual voltage when the TG Sensor is ON will become large, and the load residual voltage will become large when it is OFF. (Refer to the Residual Voltage Load Characteristics graph.) Take note of operating voltage load when using a relay, etc.

#### Load residual voltage characteristics

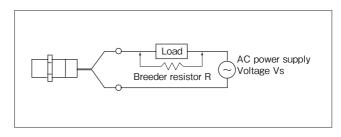




#### · When load current is small

When load current is less than 5mA, load residual voltage becomes large in the TG Sensor. (Refer to the Residual Voltage Load Characteristics graph.) In this situation, connect the breeder resistance and load in a parallel formation like in the diagram below. If load voltage is above 5mA make residual voltage less than load reset voltage. The breeder resistance value and allowable power are calculated using the below calculation.

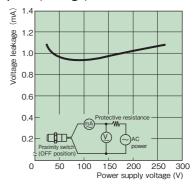
To be on the safe side, it is recommended to use  $20k\,\Omega$  1.5W (3W) and above at AC100V,  $39k\,\Omega$  3W (5W) and above at AC200V.

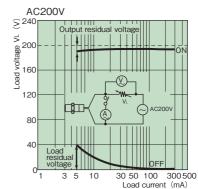

\* When the effect from heat build up becomes a problem, use the wattage in ( ) and above.

$$R \leq \frac{V}{5-i} (k\Omega)$$

$$P \leq \frac{V^2s}{5-i} \text{ (mW)}$$

P: Breeder resistance W number (As a practical matter, use the number of W several times or more)


i : Load current (mA)

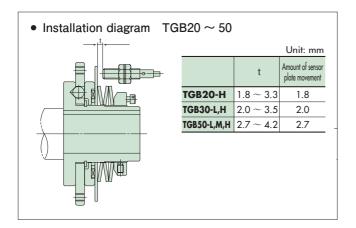



#### • The large inrush current load

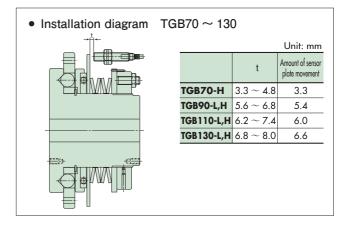
A load with large inrush current such as a lamp or motor can cause damage or deterioration to openclose elements of the sensor. In this type of situation, use the sensor via a relay.

#### • Consumption (leakage) Current Characteristics





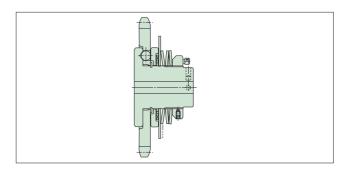

#### *SAFCON*


#### Overload detection

#### **■ TG Sensor handling**

- The detecting distance of a TG Sensor is 1.5mm. Set the Torque Guard at non-trip condition with the dimensions (s, t) in the chart below.
- · Install the TG Sensor at the tripped position. Then, while rotating the Torque Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Torque Guard.



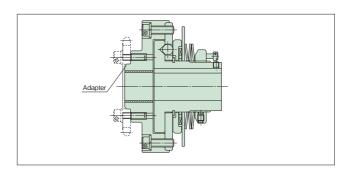

#### 

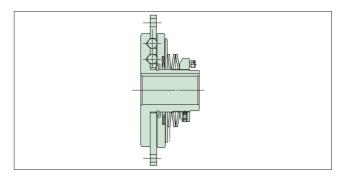


#### Special specifications

#### 1. With sprocket type

We accept orders for with the sprocket the type that are not included among our standard products. Contact Tsubaki Emerson to help you with your selection.





#### 3. Forward-reverse type

Depending on Torque Guard rotation direction, the trip torque set value can be changed. Contact TEM for more information.

#### 2. Adapter specifications(A)

It is convenient to use sprockets and pulleys with a small outside diameter. Contact Tsubaki Emerson for more information on the sprocket and pulley you will install.





#### **Torque Guard TGX Series**

#### **Features**

Non-backlash. Provides superb rigidity during normal operation. Ideal for applications that require highly accurate positioning.

#### Highly accurate trip

The lost motion during trip is very small. Accuracy of consecutive repeated trip torque fluctuations is within  $\pm 3\%$ .

#### Non-backlash

Due to its innovative ball and wedge construction (PAT.), there is almost no backlash.

#### **Coupling function**

For the coupling, the ball and wedge construction absorbs the angle, parallel and axial displacement misalignment.

#### One position

The unique assembly of the TGX Series means the ball and wedge configuration engages in only 1 position.

#### Easy torque adjustment

Just by turning the adjusting nut, trip torque can be freely adjusted.

#### Verifying set torque

The easy to read rpm and angle indicators makes verifying the torque setting easy.

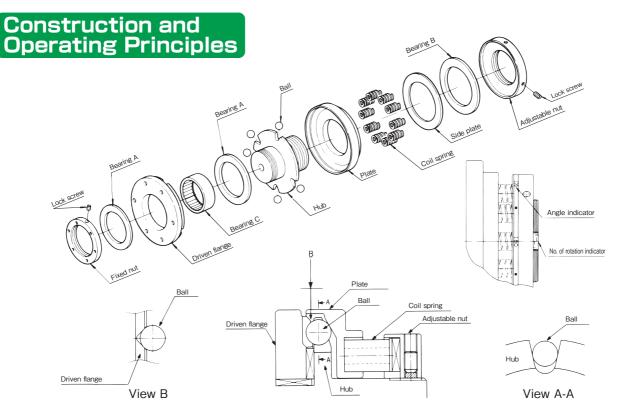
#### Standard type overload detection sensor

It can detect overload by the non-contact type TG Sensor (refer to pages 28, 29),and stop the motor or output an alarm.

#### Standard stock

Rough bores are a stock item

#### Bore finishing for quick delivery


Finished bore products can be made for quick delivery. (Refer to page 35)







TG Sensor

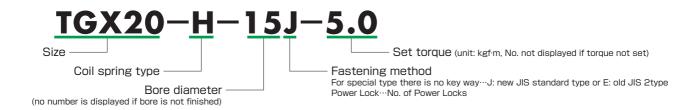


#### Ball and Wedge Mechanism

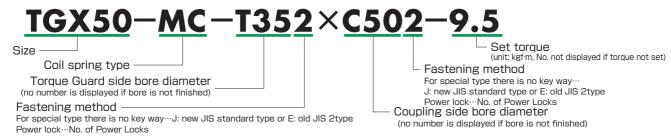
Torque transmission is transmitted from the hub  $\rightarrow$  steel ball  $\rightarrow$  driven flange. (As well as the reverse direction.) Due to the force of the coil spring, the steel ball is retained in between the hub and driven flange, and the contact portion of the metal balls are tapered, and the clearance between the steel balls and V-shape retaining portions are always zero.

In addition, because of the 2 points contact of steel balls with the driven flange at V-shaped pocket, there is no backlash. (View B)

This mechanism is a ball and wedge mechanism (PAT.).


During overload the steel balls pop out from their pockets and start rolling.

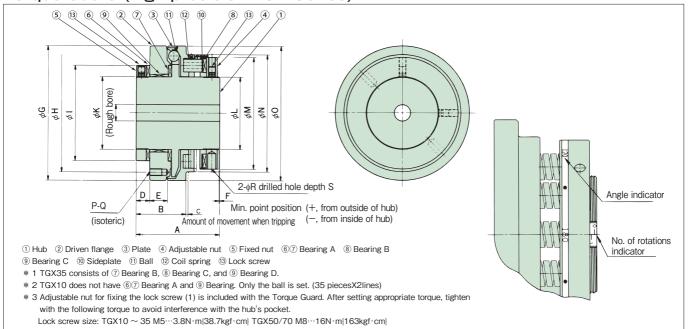
Because of this not sliding but all rolling mechanism, the friction torque when idling is extremely small and it is a highly durable mechanism.


Reset is carried out by an automatic reset system. As operation is resuming, the steel ball resets to its pocket.

As well as the TGB Series, the non-symmetric arrangement of the 5 steel balls and pockets allow only one engagement position, and there is no phase shift.

#### Model No.




#### Coupling type





#### Transmissible Capacity/Dimensions Table

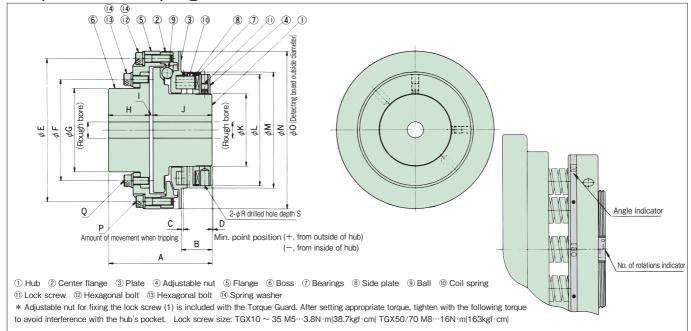
#### Torque Guard (high precision TGX Series)



Unit: mm

| Torque Guard<br>Model No. | Set torque range<br>N·m {kgf·m} | Max.<br>※r/min | Coil spring<br>color×number | Rough<br>bore<br>diamter | Min.<br>bore<br>diameter | Max.<br>bore<br>diameter | Α  | В    | C amount of movement during trip | D   | E    | F<br>min. point<br>position | G<br>h7 | H<br>PCD | ı   |   |
|---------------------------|---------------------------------|----------------|-----------------------------|--------------------------|--------------------------|--------------------------|----|------|----------------------------------|-----|------|-----------------------------|---------|----------|-----|---|
| TGX10-L                   | 1.7 ~ 6.4 (0.17 ~ 0.65)         |                | Yellow $\times$ 3           |                          |                          |                          |    |      |                                  |     |      |                             |         |          |     |   |
| TGX10-M                   | 5.4 ~ 15 (0.55 ~ 1.5)           | 1400           | $Red \times 3$              | 7                        | 9                        | 15                       | 53 | 22   | 1.4                              | 7.5 | 6.6  | +0.3                        | 62      | 54       | 42  |   |
| TGX10-H                   | 11 ~ 29 {1.1 ~ 3.0}             |                | $Red \times 6$              |                          |                          |                          |    |      |                                  |     |      |                             |         |          |     |   |
| TGX20-L                   | 6.5 ~ 24 (0.66 ~ 2.4)           |                | Yellow×6                    |                          |                          |                          |    |      |                                  |     |      |                             |         |          |     |   |
| TGX20-M                   | 13 ~ 34 {1.3 ~ 3.5}             | 1100           | $Red \times 3$              | 8.5                      | 10                       | 25                       | 64 | 35   | 1.6                              | 10  | 13.4 | +0.7                        | 86      | 74       | 60  | - |
| TGX20-H                   | 25 ~ 68 {2.6 ~ 6.9}             |                | $Red \times 6$              |                          |                          |                          |    |      |                                  |     |      |                             |         | 1        | 1   |   |
| TGX35-L                   | 23 ~ 68 {2.3 ~ 6.9}             |                | $Red \times 5$              |                          |                          |                          |    |      |                                  |     |      |                             |         |          |     |   |
| TGX35-M                   | 43 ~ 98 {4.4 ~ 10}              | 800            | Green × 5                   | 12                       | 14                       | 35                       | 68 | 37.5 | 2.0                              | 11  | 11.6 | - 0.5                       | 107     | 88       | 70  |   |
| TGX35-H                   | 87 ~ 196 (8.9 ~ 20)             |                | Green × 10                  |                          |                          |                          |    |      |                                  |     |      |                             |         | 1        | 1   |   |
| TGX50-L                   | 45 ~ 118 (4.6 ~ 12)             |                | $Red \times 5$              |                          |                          |                          |    |      |                                  |     |      |                             |         |          |     |   |
| TGX50-M                   | 90 ~ 196 (9.2 ~ 20)             | 600            | Green×5                     | 18                       | 20                       | 55                       | 92 | 54.8 | 2.6                              | 15  | 19.5 | + 0.3                       | 148     | 130      | 105 |   |
| TGX50-H                   | 176 ~ 392 (18 ~ 40)             |                | Green × 10                  |                          |                          |                          |    |      |                                  |     |      |                             |         | 1        | 1   | - |
| TGX70-L                   | 127 ~ 363  13 ~ 37              |                | Red×8                       |                          |                          |                          |    |      |                                  |     |      |                             |         |          |     |   |
| TGX70-M                   | 265 ~ 510  27 ~ 52              | 480            | Green × 8                   | 23                       | 25                       | 70                       | 98 | 61   | 3.5                              | 15  | 19.2 | + 1.0                       | 185     | 164      | 135 |   |
| TGX70-H                   | 392 ~ 784 40 ~ 80               | 1              | Green × 12                  | 1                        |                          |                          |    |      |                                  |     |      |                             | ļ       |          | l   |   |

| Torque Guard<br>Model No.     | K<br>diameter x<br>pitch | L<br>diameter x<br>pitch | М   | N   | 0    | Р | Q screw<br>diamter ×<br>length | R  | S  | жMass<br>kg | %Inertia moment<br>×10 − ²kg·m² |       |
|-------------------------------|--------------------------|--------------------------|-----|-----|------|---|--------------------------------|----|----|-------------|---------------------------------|-------|
| TGX10-L<br>TGX10-M<br>TGX10-H | M25 x 1.5                | M30 x 1.5                | 56  | 58  | 61.8 | 4 | M 4× 6                         | 5  | 10 | 0.75        | 0.0293                          | 0.117 |
| TGX20-L<br>TGX20-M<br>TGX20-H | M40 x 1.5                | M40 x 1.5                | 70  | 73  | 86   | 6 | M 5× 8                         | 5  | 10 | 1.67        | 0.134                           | 0.535 |
| TGX35-L<br>TGX35-M<br>TGX35-H | M50 x 1.5                | M55 x 1.5                | 88  | 91  | 107  | 6 | M 6× 7                         | 6  | 10 | 2.51        | 0.333                           | 1.33  |
| TGX50-L<br>TGX50-M<br>TGX50-H | M80 x 1.5                | M80 x 1.5                | 123 | 129 | 148  | 6 | M 8×13                         | 9  | 17 | 7.03        | 1.83                            | 7.32  |
| TGX70-L<br>TGX70-M<br>TGX70-H | M100 x 2.0               | M100 x 2.0               | 148 | 153 | 185  | 6 | M10×13                         | 10 | 18 | 11.4        | 4.88                            | 19.5  |


<sup>%</sup>Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 56) %Mass, inertia moment and GD² are based on the bores' maximum diameters.

Note: All products are stock items.

<sup>\*</sup>Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 38.

# **SAFCON**

### **Torque Guard Coupling**



Unit: mm

| Torque Guard | Set torque range              | *              | Coil spring    | Tor                    | que Gu | ard                     | (                      | Coupling | 9                       |     | В  | С   | D min.            | Е   | F   | G   | Н  |
|--------------|-------------------------------|----------------|----------------|------------------------|--------|-------------------------|------------------------|----------|-------------------------|-----|----|-----|-------------------|-----|-----|-----|----|
| Model No.    | N·m {kgf·m}                   | Max. r/<br>min | color×number   | Rough bore<br>diameter |        | ≫ Max.<br>bore diameter | Rough bore<br>diameter |          | % Max.<br>bore diameter | Α   | В  |     | point<br>position | PCD | PCD | G   | П  |
| TGX10-LC     | 1.5 ~ 5.4 \ \( 0.15 ~ 0.55 \) |                | Yellow×3       |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX10-MC     | 4.6 ~ 13                      | 700            | $Red \times 3$ | 7                      | 9      | 15                      | 7                      | 9        | 19                      | 69  | 24 | 1.3 | + 0.3             | 62  | 42  | 33  | 25 |
| TGX10-HC     | 9.3 ~ 25     0.95 ~ 2.6       |                | Red×6          |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX20-LC     | 5.2 ~ 19     0.53 ~ 1.9       |                | Yellow×6       |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX20-MC     | 9.8 ~ 27 {1.0 ~ 2.8}          | 550            | $Red \times 3$ | 8.5                    | 10     | 25                      | 8.5                    | 8.5 10   | 35 84                   | 84  | 24 | 1.6 | + 0.3             | 89  | 66  | 55  | 35 |
| TGX20-HC     | 21 ~ 55 {2.1 ~ 5.6}           |                | Red×6          |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX35-LC     | 19 ~ 57 {1.9 ~ 5.8}           |                | $Red \times 5$ |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX35-MC     | 36 ~ 84  3.7 ~ 8.6            | 400            | Green × 5      | 12                     | 14     | 14 35                   | 12                     | 12 14    | 50                      | 88  | 24 | 1.9 | - 0.5             | 113 | 83  | 70  | 35 |
| TGX35-HC     | 74 ~ 167 (7.5 ~ 17)           |                | Green × 10     |                        |        |                         |                        |          |                         |     |    |     |                   |     |     | ,   |    |
| TGX50-LC     | 40 ~ 98  4.1 ~ 10             |                | $Red \times 5$ |                        |        |                         |                        |          |                         | 114 | 34 |     |                   |     |     |     | 45 |
| TGX50-MC     | 81 ~ 176 (8.3 ~ 18)           | 300            | Green × 5      | 18                     | 20     | 55                      | 18                     | 20       | 60                      |     |    | 2.4 | + 0.9             | 158 | 112 | 92  |    |
| TGX50-HC     | 167 ~ 343 (17 ~ 35)           |                | Green × 10     |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX70-LC     | 118 ~ 323 {12 ~ 33}           |                | Red×8          |                        |        |                         |                        |          |                         |     |    |     |                   |     |     |     |    |
| TGX70-MC     | 235 ~ 461 (24 ~ 47)           | 240            | Green × 8      | 23                     | 25     | 70                      | 23                     | 25       | 80                      | 124 | 36 | 3.3 | + 0.6             | 200 | 145 | 116 | 50 |
| TGX70-HC     | 353 ~ 696 (36 ~ 71)           | 1              | Green × 12     | 1                      |        |                         |                        |          |                         |     |    |     |                   |     |     | ,   |    |

| Torque Guard<br>Model No. | ı | J  | K<br>diamter<br>× pitch | L   | м   | N   | 0   | P screw<br>diameter<br>× length | Q screw<br>diameter<br>× length | R  | S  | *<br>Mass<br>kg | inertia moment<br>×10 − ²kg·m² | %GD <sup>2</sup><br>×10 <sup>-2</sup> kgf⋅m <sup>2</sup> | Allowable<br>angular mis-<br>alignment (deg.) | Allowable<br>parallel<br>misalignment | Allowable<br>shaft direction<br>displacement |
|---------------------------|---|----|-------------------------|-----|-----|-----|-----|---------------------------------|---------------------------------|----|----|-----------------|--------------------------------|----------------------------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------|
| TGX10-LC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX10-MC                  | 2 | 42 | M 30×1.5                | 56  | _   | 74  | 74  | M 4×18                          | M 4×10                          | 5  | 10 | 1.07            | 0.0555                         | 0.222                                                    | 0.6                                           | 0.1                                   | ±0.5                                         |
| TGX10-HC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX20-LC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX20-MC                  | 3 | 46 | M 40×1.5                | 70  | _   | 98  | 98  | M 5×20                          | M 5×12                          | 5  | 10 | 2.38            | 0.231                          | 0.924                                                    | 0.6                                           | 0.1                                   | ±0.5                                         |
| TGX20-HC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX35-LC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX35-MC                  | 3 | 50 | M 55×1.5                | 88  | -   | 125 | 125 | M 6×25                          | M 6×15                          | 6  | 10 | 3.92            | 0.663                          | 2.65                                                     | 0.6                                           | 0.1                                   | ±0.5                                         |
| TGX35-HC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX50-LC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX50-MC                  | 4 | 65 | M 80×1.5                | 123 | 128 | 174 | 174 | M 8×32                          | M 8×20                          | 9  | 17 | 10.9            | 3.35                           | 13.4                                                     | 0.6                                           | 0.1                                   | ±0.6                                         |
| TGX50-HC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX70-LC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |
| TGX70-MC                  | 4 | 70 | M100×2.0                | 148 | 152 | 218 | 218 | M10×22                          | M10×38                          | 10 | 18 | 16.3            | 8.93                           | 35.7                                                     | 0.6                                           | 0.1                                   | ±0.7                                         |
| TGX70-HC                  |   |    |                         |     |     |     |     |                                 |                                 |    |    |                 |                                |                                                          |                                               |                                       |                                              |

Note: All products are stock items.

<sup>\*\*</sup>Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 56)
\*\*Mass, inertia moment and GD2 are based on the bores' maximum diameters.
\*\*Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 38.



# Torque Guard TGX, and Torque Guard Coupling TGX-C with Finished Bore

### Finished bore products can be made for quick delivery

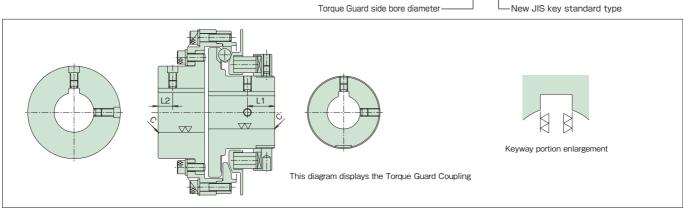
■ Bores and keyways are already finished before delivery.

The finished bores for TGX10  $\sim$  TGX70 and TGX10-C  $\sim$  TGX70-C are standard.

### ■ Finished Bore Dimension Chart

Unit: mm

| Torque G               | Guard TGX                      | Bore                                                                        | dimensions                                                                           |  |  |  |
|------------------------|--------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| Torque Guard Model No. | Torque Gard Coupling Model No. | Torque Guard Side                                                           | Coupling side (Torque Guard Coupling only)                                           |  |  |  |
| TGX10 TGX10-C          |                                | (10),(11),12,14,15                                                          | 10,11,12,14,15,16,17,18,19                                                           |  |  |  |
| TGX20                  | TGX20-C                        | (14),(15),(16),(17),18,19,20,22,24,25                                       | 10,11,12,14,15,16,17,18,19,20,22,24,25,28,29, 30,32,33,35                            |  |  |  |
| TGX35                  | TGX35-C                        | (14),(15),(16),(17),18,19,20,22,24,25,<br>28,29,30,32,33,35                 | 14,15,16,17,18,19,20,22,24,25,28,29,30,32,33,<br>35,36,38,40,42,43,45,46,48,50       |  |  |  |
| TGX50                  | TGX50-C                        | 20,22,24,25,28,29,30,32,33,35,36,38,40,<br>42,43,45,46,48,50,52,55          | 20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50,52,55,56,57,60              |  |  |  |
| TGX70                  | тдх70-с                        | 25,28,29,30,32,33,35,36,38,40,42,43,45,<br>46,48,50,52,55,56,57,60,63,65,70 | 25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,<br>50,52,55,56,57,60,63,65,70,71,75,80 |  |  |  |
| Del                    | ivery                          | EXJapan 4 weeks by sea                                                      |                                                                                      |  |  |  |


<sup>1.</sup> Finished bore dimensions with ( ) at Torque Guard side are applied only for Torque Guard Coupling.

### Model No.



### **Torque Guard Coupling**





| Torque G                  | Ton                                   | que Guard s         | iide      | Coupling side<br>(Torque Guard Coupling only) |                     |           |                             |
|---------------------------|---------------------------------------|---------------------|-----------|-----------------------------------------------|---------------------|-----------|-----------------------------|
| Torque Guard<br>Model No. | Torque Guard<br>Coupling<br>Model No. | Bore<br>diameter    | Set screw | Set screw<br>position<br>L1                   | Bore<br>diameter    | Set screw | Set screw<br>position<br>L2 |
| TGX10                     | TGX10-C                               | $\phi$ 15 and below | 2-M4×4    | 21                                            | $\phi$ 19 and below | 2-M4×4    | 8                           |
| TGX20                     | TGX20-C                               | $\phi$ 23 and below | 2-M5×5    | 20.5                                          | $\phi$ 35 and below | 2-M5×5    | 12                          |
| 16.20                     | IGX20-C                               | φ 24,25             | 2-M4×4    | 20.5                                          |                     |           | 12                          |
| TGX35                     | TGX35-C                               | $\phi$ 35 and below | 2-M6×6    | 20.5                                          | $\phi$ 50 and below | 2-M6×6    | 11                          |
| TGX50                     | TGX50 TGX50-C                         | $\phi$ 55 and below | 2-M6×6    | 24.5                                          | $\phi$ 60 and below | 2-M6×6    | 13                          |
| TGX70                     | TGX70-C                               | $\phi$ 70 and below | 2-M6×6    | 25                                            | $\phi$ 80 and below | 2-M6×6    | 15                          |

<sup>1.</sup> Set screws are located at 2 positions, on the keyway and  $90^\circ$   $\,$  CW from it.

### Bore diameter and keyway specifications

- · Bore diameter tolerance is as follows:  $\phi$  18 and below·····0  $\sim$  +0.021mm  $\phi$  19 and above·····H7
- · Keyway is New JIS (JIS B 1301-1996) "standard".
- · Set screws are included in the delivery.

| Bore diameter       | Chamfer dimensions |
|---------------------|--------------------|
| $\phi$ 25 and below | C0.5               |
| $\phi$ 50 and below | C1                 |
| $\phi$ 51 and above | C1.5               |

<sup>2.</sup> For Torque Guard Couplings, only the TGX10-C has a different keyway phase between the Torque Guard side and the coupling side.



### Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

### 1. Setting trip torque

$$\begin{split} T_{\scriptscriptstyle P} = \ T_{\scriptscriptstyle L} \times S.F = \frac{60000 \times P}{2 \, \pi \, \cdot n} \times S.F \ \left| T_{\scriptscriptstyle P} = \frac{974 \times P}{n} \times S.F \right| \\ T_{\scriptscriptstyle P} = Trip \ torque \ N \cdot m |kgf \cdot m| \qquad T_{\scriptscriptstyle L} = Load \ torque \ N \cdot m |kgf \cdot m| \\ P = Transmittance power \ kW \qquad S.F = Service \ factor \\ n = rpm \ r/min \end{split}$$

 From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.

(2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1

| Service factor | Operating conditions                                         |
|----------------|--------------------------------------------------------------|
| 1.25           | In the case of normal start up/stop, intermittent operation  |
| 1.50           | In the case of a heavy shock load or forward-reverse driving |

### 2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_L + I_T}{I_S} \qquad \left\{ \begin{array}{l} K = \frac{GD_L^2 + GD_T^2}{GD_s^2} \end{array} \right\} \qquad T_T = \frac{K \cdot T_S + T_L}{1 + K} \qquad T_P = SF \cdot T_T \cdot$$

K : Inertia ratio

 $I_s$ : Drive side inertia moment  $(kg \cdot m^2)$ 

### Handling

### 1. Setting trip torque

(1) TGX Torque Guards are all set at the "0" point (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Torque Guard. (Refer to pages 33, 34)

(2) From the "Tightening Amount Torque Correlation Chart" (below), find the adjusting nut's (bolt) tightening angle equivalent to the predetermined trip torque. The torque indicator is at every 60° pitch. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum

 $\{\mathsf{GD}_s^2 : \mathrm{Drive\ side\ GD^2\ } (kgf\!\cdot\!m^2)\}$ 

 $I_L$ : Load side inertia moment  $(kg \cdot m^2)$ 

 $\{GD_L^2 : load \ side \ GD^2 \ (kgf \cdot m^2)\}$ 

It : Torque Guard inertia moment (kg·m²)

 $\{GD_t^2 : Torque Guard GD^2 (kgf \cdot m^2)\}$ 

 $T_s$ : Motor starting torque  $(N \cdot m) \{ kgf \cdot m^2 \}$ 

 $T_t \quad : \text{Torque in Torque Guard during start up } (N \cdot m) \, \{ kgf \cdot m^2 \}$ 

 $\begin{array}{ll} T_L & : Load \ torque \ (N \cdot m) \, \{kgf \cdot m\} \\ T_P & : Trip \ torque \ (N \cdot m) \, \{kgf \cdot m\} \end{array}$ 

S.F. : Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD<sup>2</sup> and torque value.

### 3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

### 4. Choosing the model number

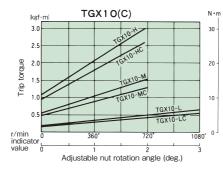
Choose a model where the calculated trip torque is within the minimum to maximum setting range.

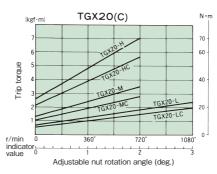
### 5. Verifying bore diameter

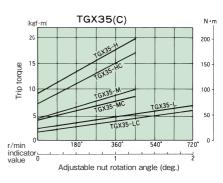
Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

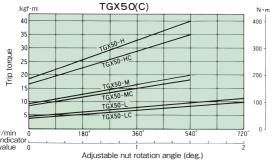
If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

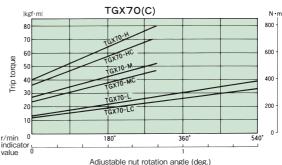
### 6. Confirming rpm


Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.


trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use these values only as a rough guide.


(3) After setting torque, screw the lock screw to the adjusting nut.


(4) Do not turn the adjusting nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend. Refer to page 27 for the lock screws' tightening torque and precautions.


### ■ Tightening Amount-Torque Correlation Chart











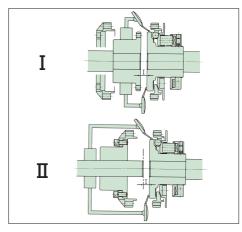
### Centering method

### (1) Centering method I

- a. Separate the flange from the hub and center flange.
- b. Move the flange, then set to the I dimensions shown in Table 1.
- c. Fix a dial gauge to the hub (coupling side hub), then measure the run-out of the hub's end face and outer circumference.

### (2) Centering method II

- a. Separate the flange and the center flange.
- b. Fix a dial gauge to the shaft, then measure the run-out of the hub's end face and outer circumference.
- c. Move the boss (coupling side hub), then set to the I dimensions shown in Table 1.


|      | Make sure to secure it using the I dimensions in |
|------|--------------------------------------------------|
| Note | Table 1, otherwise the Torque Guard can not be   |
|      | used because backlash will occur.                |

### Allowable Misalignment

Unit: mm

| Model No. | Allowable angular misalignment deg. | Allowable parallel misalignment | Allowable axial misalignment |  |  |
|-----------|-------------------------------------|---------------------------------|------------------------------|--|--|
| TGX10-C   | 0.6                                 | 0.1                             | ± 0.5                        |  |  |
| TGX20-C   | 0.6                                 | 0.1                             | ±0.5                         |  |  |
| TGX35-C   | 0.6                                 | 0.1                             | ± 0.5                        |  |  |
| TGX50-C   | 0.6                                 | 0.1                             | ±0.6                         |  |  |
| TGX70-C   | 0.6                                 | 0.1                             | ± 0.7                        |  |  |

| Table 1 Unit: mm |              |  |  |  |  |  |  |
|------------------|--------------|--|--|--|--|--|--|
| Model No.        | I dimensions |  |  |  |  |  |  |
| TGX10-C          | 2            |  |  |  |  |  |  |
| TGX20-C          | 3            |  |  |  |  |  |  |
| TGX35-C          | 3            |  |  |  |  |  |  |
| TGX50-C          | 4            |  |  |  |  |  |  |
| TGX70-C          | 4            |  |  |  |  |  |  |



For reference: Hub end face run-out per angular misalignment  $\theta = 0.10^{\circ}$  Unit mm

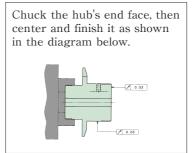
| Model No. | Outside diameter | Hub end face run-out |
|-----------|------------------|----------------------|
| TGX10-C   | φ 53             | 0.092                |
| TGX20-C   | φ75              | 0.131                |
| TGX35-C   | φ98              | 0.171                |
| TGX50-C   | φ 138            | 0.241                |
| TGX70-C   | φ 177            | 0.309                |

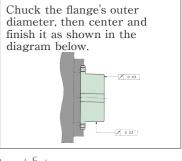
\* Make angular misalignment as small as possible when installing the Torque Guard.

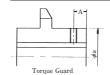
### Maintenance

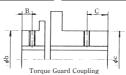
Lightly grease the balls and bearings once per year or every 1,000 trips.

### Grease


| Exxon Mobil | Showa Shell            | Idemitsu                     | JX Nippon Oil & Energy  | Cosmo Oil                    |
|-------------|------------------------|------------------------------|-------------------------|------------------------------|
| Mobilux EP2 | Alvania<br>EP Grease 2 | Daphny Eponex<br>Grease EP 2 | Epinoc<br>Grease AP(N)2 | Cosmo<br>Dynamax EP Grease 2 |


### Bore finishing

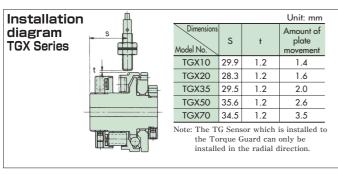

Refer to the instruction manual for more information on Torque Guard TGX and Torque Guard Coupling TGX-C disassembly for bore finishing, finishing and assembly.

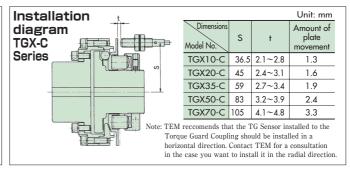

### Bore Keyway Set Screw Dimensions

| Dimensions<br>Model No. | A x screw diameter | B x screw diameter | C x screw diameter | а   | b   | С   |
|-------------------------|--------------------|--------------------|--------------------|-----|-----|-----|
| TGX10                   | 21 ×M5 and below   |                    |                    | 30  | _   | _   |
| TGX20                   | 20.5×M5            |                    |                    | 40  | _   |     |
| TGX35                   | 20.5×M6            |                    |                    | 55  | _   | _   |
| TGX50                   | 24.5×M6            |                    |                    | 80  | _   | _   |
| TGX70                   | 26 × M6            |                    |                    | 100 |     | _   |
| TGX10-C                 |                    | 8×M 4 and below    | 21 ×M5 and below   | _   | 33  | 30  |
| TGX20-C                 |                    | 12×M 8 and below   | 20.5×M5            | _   | 55  | 40  |
| TGX35-C                 |                    | 11 × M10 and below | 20.5×M6            | _   | 70  | 55  |
| TGX50-C                 |                    | 13×M10 and below   | 24.5×M6            | _   | 92  | 80  |
| TGX70-C                 |                    | 15×M10 and below   | 25.2×M6            |     | 116 | 100 |








### **Overload Detection**

### **TG Sensor Installation**

- The detecting distance of a TG Sensor is 1.5mm. Set the Torque Guard in a non-trip condition with the dimensions (s, t) in the chart below.
- Install the TG Sensor with the Torque Guard at the tripped position. Then, while rotating the Torque Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Torque Guard.





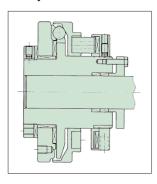
### Combination with a Power Lock

### 1. Applicable range and Transmissible torque

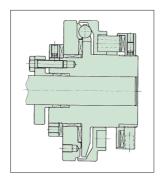
It is possible to combine Torque Guards and Torque Guard Couplings with the Power Locks listed below. TEM will also supply a Torque Guard combined with a Power Lock and special pressure flange and bolts upon request. The chart shows Power Lock transmissible torque for a single set. In the case of multiple sets, multiply by the coefficient below to get the transmissible torque.

| Ν | S    |
|---|------|
| 2 | 1.55 |
| 3 | 1.85 |

N = Line Power Lock sets


S = coefficient

(Example) In case the shaft diameter of 10 mm and 2 sets of Power Locks for TGX20


 $1.10 \times 1.55 = 1.705$  about 1.70kgf·m

### (1) Torgue Guard TGX

### Adjustable nut side



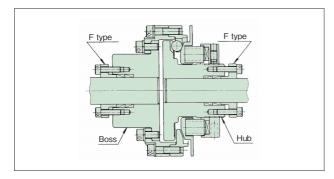
### Fixed nut side



### Power Lock transmissible torque

N·m {kgf·m}

|       | WOI LOOK   | traric         | ,,,,,,   | 1010           | torqu          | •             |                |                |               | 14,111         | Kgiriiis       |
|-------|------------|----------------|----------|----------------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|
| Bore  |            |                |          |                | Model          | No. of        | Touque         | Guard          |               |                |                |
| re di | Power Lock | TG             | K10      | TG             | X20            | TG            | X35            | TG             | X50           | TG             | X70            |
| diame | Model No.  | Adjustable     |          | Adjustable     |                | Adjustable    |                | Adjustable     |               | Adjustable     |                |
| er    |            |                | nut side |                | nut side       | nut side      | nut side       | nut side       | nut side      | nut side       | nut side       |
| 10    | PL010×013E | 10.8<br>{1.10} |          | 10.8<br>{1.10} | 10.8<br>{1.10} |               |                |                |               |                |                |
| 12    | PL012×015E | 15.7<br>{1.60} |          | 15.7<br>{1.60} | 15.7<br>{1.60} |               |                |                |               |                |                |
| 13    | PL013×016E |                |          | 18.6<br> 1.90  | 18.6<br> 1.90  |               |                |                |               |                |                |
| 14    | PL014×018E |                |          | 30.4<br> 3.10  | 30.4<br> 3.10  |               |                |                |               |                |                |
| 15    | PL015×019E |                |          | 35.3<br> 3.60  | 35.3<br> 3.60  | 35.3<br> 3.60 | 35.3<br> 3.60  |                |               |                |                |
| 16    | PL016×020E |                |          | 39.2<br> 4.00  | 39.2<br> 4.00  | 40.2<br> 4.10 | 40.2<br> 4.10  |                |               |                |                |
| 17    | PL017×021E |                |          | 43.1<br> 4.40  | 43.1<br> 4.40  | 45.1<br> 4.60 | 45.1<br> 4.60  |                |               |                |                |
| 18    | PL018×022E |                |          | 46.1<br> 4.70  | 46.1<br> 4.70  | 51.0<br> 5.20 | 51.0<br> 5.20  |                |               |                |                |
| 19    | PL019×024E |                |          | 41.2<br> 4.20  | 41.2<br> 4.20  | 56.8<br> 5.80 | 56.8<br> 5.80  |                |               |                |                |
| 20    | PL020×025E |                |          | 44.1<br> 4.50  | 44.1<br> 4.50  | 62.7<br> 6.40 | 62.7<br> 6.40  | 62.7<br> 6.40  | 62.7<br> 6.40 |                |                |
| 22    | PL022×026E |                |          |                |                | 75.5<br> 7.70 | 75.5<br>{7.70} | 75.5<br>{7.70} | 75.5<br> 7.70 |                |                |
| 24    | PL024×028E |                |          |                |                | 90.2<br> 9.20 | 90.2<br> 9.20  | 90.2<br> 9.20  | 90.2<br> 9.20 |                |                |
| 25    | PL025×030E |                |          |                |                | 91.1          |                | 98.0<br>{10.0} | 98.0<br> 10.0 | 98.0<br>{10.0} | 98.0<br>[10.0] |
| 28    | PL028×032E |                |          |                |                | 111           |                | 123<br>{12.5}  | 123<br> 12.5  | 123<br> 12.5   | 123<br> 12.5   |
| 30    | PL030×035E |                |          |                |                | 115<br>{11.7} |                | 141<br>{14.4}  | 141<br>{14.4} | 141<br>{14.4}  | 141<br>{14.4}  |
| 32    | PL032×036E |                |          |                |                | 124<br> 12.7  |                | 160<br>[16.3]  | 160<br>[16.3] | 160<br>[16.3]  | 160<br>[16.3]  |
| 35    | PL035×040E |                |          |                |                | 127<br> 13.0  |                | 217<br>{22.1}  | 217<br>{22.1} | 217<br>{22.1}  | 217<br> 22.1   |
| 36    | PL036×042E |                |          |                |                |               |                | 229<br> 23.4   | 229<br> 23.4  | 229<br> 23.4   | 229<br> 23.4   |
| 38    | PL038×044E |                |          |                |                |               |                | 256<br>{26.1}  | 256<br> 26.1  | 256<br> 26.1   | 256<br> 26.1   |
| 40    | PL040×045E |                |          |                |                |               |                | 312<br> 31.8   | 312<br> 31.8  | 312<br> 31.8   | 312<br> 31.8   |
| 42    | PL042×048E |                |          |                |                |               |                | 344<br> 35.1   | 344<br> 35.1  | 344<br> 35.1   | 344<br> 35.1   |
| 45    | PL045×052E |                |          |                |                |               |                | 366<br> 37.3   | 366<br> 37.3  | 490<br> 50.0   | 490<br> 50.0   |
| 48    | PL048×055E |                |          |                |                |               |                | 398<br> 40.6   | 398<br> 40.6  | 530<br> 54.1   | 530<br> 54.1   |
| 50    | PL050×057E |                |          |                |                |               |                | 419<br> 42.8   | 419<br> 42.8  | 557<br> 56.8   | 557<br> 56.8   |
| 55    | PL055×062E |                |          |                |                |               |                |                |               | 624            | 624            |
| 56    | PL056×064E |                |          |                |                |               |                |                |               | 590<br> 60.2   | 590<br> 60.2   |
| 60    | PL060×068E |                |          |                |                |               |                |                |               | 644            | 644            |
| 63    | PL063×071E |                |          |                |                |               |                |                |               | 685<br> 69.9   | 685<br> 69.9   |
| 65    | PL065×073E |                |          |                |                |               |                |                |               | 711            | 711            |
| 70    | PL070×079E |                |          |                |                |               |                |                |               | 724            | 724            |


### Pressure bolt tightening torque

N·m {kgf·m}

| N·m   kgf·m     Model No. of Touque Guard |               |                |          |                |                |               |                |                |                |                |                |
|-------------------------------------------|---------------|----------------|----------|----------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|
| Bor                                       | Dannan La ala |                |          |                |                |               |                |                |                |                |                |
| e di                                      | Power Lock    | TG             | X10      | TG             | X20            | TG            | X35            | TG:            | X50            | TG             | X70            |
| Bore diameter                             | Model No.     | Adjustable     |          | Adjustable     |                | Adjustable    |                | Adjustable     |                | Adjustable     |                |
| <u>e</u>                                  |               | nut side       | nut side |                | nut side       | nut side      | nut side       | nut side       | nut side       | nut side       | nut side       |
| 10                                        | PL010×013E    | 2.94<br>(0.30) |          | 1.96<br>(0.20) | 1.96<br>(0.20) |               |                |                |                |                |                |
| 12                                        | PL012×015E    | 3.14<br> 0.32  |          | 2.06<br> 0.21  | 2.06<br> 0.21  |               |                |                |                |                |                |
| 13                                        | PL013×016E    |                |          | 2.16<br> 0.22  | 2.16<br> 0.22  |               |                |                |                |                |                |
| 14                                        | PL014×018E    |                |          | 3.53<br> 0.36  | 3.53<br> 0.36  |               |                |                |                |                |                |
| 15                                        | PL015×019E    |                |          | 3.92<br> 0.40  | 3.92<br> 0.40  | 2.94<br> 0.30 | 5.00<br>{0.51} |                |                |                |                |
| 16                                        | PL016×020E    |                |          | 4.02<br> 0.41  | 4.02<br>(0.41) | 3.04<br> 0.31 | 5.10<br>{0.52} |                |                |                |                |
| 17                                        | PL017×021E    |                |          | 4.02<br> 0.41  | 4.02<br>(0.41) | 3.14<br> 0.32 | 5.19<br> 0.53  |                |                |                |                |
| 18                                        | PL018×022E    |                |          | 4.02<br> 0.41  | 4.02<br> 0.41  | 3.23<br> 0.33 | 5.39<br>(0.55) |                |                |                |                |
| 19                                        | PL019×024E    |                |          | 4.02<br>(0.41) | 4.02<br> 0.41  | 3.63<br> 0.37 | 6.17<br> 0.63  |                |                |                |                |
| 20                                        | PL020×025E    |                |          | 4.02<br>(0.41) | 4.02<br> 0.41  | 3.72<br> 0.38 | 6.37<br> 0.65  | 5.49<br>(0.56) | 5.49<br> 0.56  |                |                |
| 22                                        | PL022×026E    |                |          |                |                | 3.72<br> 0.38 | 6.27<br> 0.64  | 5.59<br>{0.57} | 5.59<br> 0.57  |                |                |
| 24                                        | PL024×028E    |                |          |                |                | 3.92<br> 0.40 | 6.66<br> 0.68  | 5.59<br>{0.57} | 5.59<br>{0.57} |                |                |
| 25                                        | PL025×030E    |                |          |                |                | 4.02<br> 0.41 |                | 6.27<br> 0.64  | 6.27<br> 0.64  | 5.00<br>(0.51) | 5.00<br>{0.51} |
| 28                                        | PL028×032E    |                |          |                |                | 4.02<br> 0.41 |                | 6.47<br> 0.66  | 6.47<br> 0.66  | 5.19<br>(0.53) | 5.19<br>(0.53) |
| 30                                        | PL030×035E    |                |          |                |                | 4.02<br> 0.41 |                | 7.06<br>{0.72} | 7.06<br> 0.72  | 5.59<br>(0.57) | 5.59<br>{0.57} |
| 32                                        | PL032×036E    |                |          |                |                | 4.02<br> 0.41 |                | 7.35<br>{0.75} | 7.35<br> 0.75  | 5.88<br>(0.60) | 5.88<br>(0.60) |
| 35                                        | PL035×040E    |                |          |                |                | 4.02<br> 0.41 |                | 9.11<br>{0.93} | 9.11<br> 0.93  | 7.25<br> 0.74  | 7.25<br>(0.74) |
| 36                                        | PL036×042E    |                |          |                |                |               |                | 9.51<br>{0.97} | 9.51<br>{0.97} | 7.64<br> 0.78  | 7.64<br> 0.78  |
| 38                                        | PL038×044E    |                |          |                |                |               |                | 9.90<br>{1.01} | 9.90<br>{1.01} | 7.94<br> 0.81  | 7.94<br>{0.81} |
| 40                                        | PL040×045E    |                |          |                |                |               |                | 11.7<br>{1.19} | 11.7<br> 1.19  | 9.31<br> 0.95  | 9.31<br>{0.95} |
| 42                                        | PL042×048E    |                |          |                |                |               |                | 12.3<br> 1.26  | 12.3<br> 1.26  | 9.80<br>1.00   | 9.80<br>{1.00} |
| 45                                        | PL045×052E    |                |          |                |                |               |                | 13.7<br>{1.40} | 13.7<br>{1.40} | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 48                                        | PL048×055E    |                |          |                |                |               |                | 13.7<br>{1.40} | 13.7<br> 1.40  | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 50                                        | PL050×057E    |                |          |                |                |               |                | 13.7<br>{1.40} | 13.7<br> 1.40  | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 55                                        | PL055×062E    |                |          |                |                |               |                |                |                | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 56                                        | PL056×064E    |                |          |                |                |               |                |                |                | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 60                                        | PL060×068E    |                |          |                |                |               |                |                |                | 13.7<br>{1.40} | 13.7<br>{1.40} |
| 63                                        | PL063×071E    |                |          |                |                |               |                |                |                | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 65                                        | PL065×073E    |                |          |                |                |               |                |                |                | 13.7<br> 1.40  | 13.7<br>{1.40} |
| 70                                        | PL070×079E    |                |          |                |                |               |                |                |                | 13.7<br> 1.40  | 13.7<br>{1.40} |

# Torque Guard

### (2) Torgue Guard Coupling TGX-C



### Power Lock transmissible torque

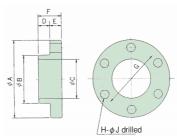
N·m {kgf·m}

| Bore     |            |                |                |                | Model         | No. of        | Touque        | Guard         |               |                |                |
|----------|------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|
| e<br>e.  | Power Lock | TGX            | 10-C           | TGX            | 20-C          | TGX           | 35-C          | TGX           | 50-C          | TGX            | 70-C           |
| diameter | Model No.  | Torque Guard   | Coupling       |                | Coupling      |               | Coupling      | Torque Guard  | Coupling      | Torque Guard   | Coupling       |
| er       |            | side           | side           | side           | side          | side          | side          | side          | side          | side           | side           |
| 10       | PL010×013E | 10.8<br>[1.10] | 10.8<br>[1.10] | 10.8<br>[1.10] | 10.8<br> 1.10 |               |               |               |               |                |                |
| 12       | PL012×015E | 15.7<br>{1.60} | 15.7<br> 1.60  | 15.7<br> 1.60  | 15.7<br> 1.60 |               |               |               |               |                |                |
| 13       | PL013×016E |                |                | 18.6<br> 1.90  | 18.6<br> 1.90 |               |               |               |               |                |                |
| 14       | PL014×018E |                |                | 30.4<br> 3.10  | 30.4<br> 3.10 |               |               |               |               |                |                |
| 15       | PL015×019E |                |                | 35.3<br> 3.60  | 35.3<br> 3.60 | 35.3<br> 3.60 | 35.3<br> 3.60 |               |               |                |                |
| 16       | PL016×020E |                |                | 39.2<br>{4.00} | 39.2<br> 4.00 | 40.2<br> 4.10 | 40.2<br> 4.10 |               |               |                |                |
| 17       | PL017×021E |                |                | 43.1<br> 4.40  | 43.1<br> 4.40 | 45.1<br> 4.60 | 45.1<br> 4.60 |               |               |                |                |
| 18       | PL018×022E |                |                | 46.1<br>{4.70} | 46.1<br> 4.70 | 51.0<br> 5.20 | 51.0<br> 5.20 |               |               |                |                |
| 19       | PL019×024E |                |                | 41.2<br>{4.20} | 41.2<br> 4.20 | 56.8<br> 5.80 | 56.8<br> 5.80 |               |               |                |                |
| 20       | PL020×025E |                |                | 44.1<br>{4.50} | 44.1<br> 4.50 | 62.7<br> 6.40 | 62.7<br> 6.40 | 62.7<br> 6.40 | 62.7<br> 6.40 |                |                |
| 22       | PL022×026E |                |                |                |               | 75.5<br> 7.70 | 75.5<br> 7.70 | 75.5<br> 7.70 | 75.5<br> 7.70 |                |                |
| 24       | PL024×028E |                |                |                |               | 90.2<br> 9.20 | 90.2<br> 9.20 | 90.2<br> 9.20 | 90.2<br> 9.20 |                |                |
| 25       | PL025×030E |                |                |                |               | 91.1<br> 9.30 | 91.1<br> 9.30 | 98.0<br> 10.0 | 98.0<br> 10.0 | 98.0<br>{10.0} | 98.0<br>{10.0} |
| 28       | PL028×032E |                |                |                |               | 111<br> 11.3  | 111<br>{11.3} | 123<br> 12.5  | 123<br> 12.5  | 123<br>{12.5}  | 123<br>{12.5}  |
| 30       | PL030×035E |                |                |                |               | 115<br>{11.7} | 115<br>{11.7} | 141<br>{14.4} | 141<br>{14.4} | 141<br>{14.4}  | 141<br>{14.4}  |
| 32       | PL032×036E |                |                |                |               | 124<br>{12.7} | 124<br>{12.7} | 160<br> 16.3  | 160<br> 16.3  | 160<br>{16.3}  | 160<br>{16.3}  |
| 35       | PL035×040E |                |                |                |               | 127<br> 13.0  | 127<br> 13.0  | 217<br> 22.1  | 217<br> 22.1  | 217<br> 22.1   | 217<br>{22.1}  |
| 36       | PL036×042E |                |                |                |               |               |               | 229<br> 23.4  | 229<br> 23.4  | 229<br> 23.4   | 229<br> 23.4   |
| 38       | PL038×044E |                |                |                |               |               |               | 256<br> 26.1  | 256<br> 26.1  | 256<br> 26.1   | 256<br> 26.1   |
| 40       | PL040×045E |                |                |                |               |               |               | 312<br> 31.8  | 312<br> 31.8  | 312<br> 31.8   | 312<br> 31.8   |
| 42       | PL042×048E |                |                |                |               |               |               | 344<br> 35.1  | 344<br> 35.1  | 344<br> 35.1   | 344<br> 35.1   |
| 45       | PL045×052E |                |                |                |               |               |               | 366<br> 37.3  | 366<br> 37.3  | 490<br> 50.0   | 490<br>{50.0}  |
| 48       | PL048×055E |                |                |                |               |               |               | 398<br> 40.6  | 398<br> 40.6  | 530<br> 54.1}  | 530<br>{54.1}  |
| 50       | PL050×057E |                |                |                |               |               |               | 419<br> 42.8  | 419<br> 42.8  | 557<br> 56.8   | 557<br> 56.8   |
| 55       | PL055×062E |                |                |                |               |               |               |               |               | 624<br> 63.7   | 624<br> 63.7   |
| 56       | PL056×064E |                |                |                |               |               |               |               |               | 590<br> 60.2   | 590<br> 60.2   |
| 60       | PL060×068E |                |                |                |               |               |               |               |               | 644<br> 65.7   | 644<br> 65.7   |
| 63       | PL063×071E |                |                |                |               |               |               |               |               | 685<br> 69.9   | 685<br> 69.9   |
| 65       | PL065×073E |                |                |                |               |               |               |               |               | 711<br> 72.6   | 711<br>{72.6}  |
| 70       | PL070×079E |                |                |                |               |               |               |               |               | 724<br> 73.9   | 724<br> 73.9   |

### Pressure bolt tightening torque

N·m {kgf·m}

| Во            |            |                      |               |                      | Mode           | l No. of             | Touque (       | Guard                |                |                      |                |
|---------------|------------|----------------------|---------------|----------------------|----------------|----------------------|----------------|----------------------|----------------|----------------------|----------------|
| re di         | Power Lock | TGX                  | 10-C          | TGX                  | 20-C           | TGX                  | 35-C           | TGX                  | 50-C           | TGX                  | 70-C           |
| Bore diameter | Model No.  | Torque Guard<br>side | Coupling side | Torque Guard<br>side | Coupling side  | Torque Guard<br>side | Coupling side  | Torque Guard<br>side | Coupling side  | Torque Guard<br>side | Coupling side  |
| 10            | PL010×013E | 2.94                 | 2.94          | 1.96                 | 1.96           |                      |                |                      |                |                      |                |
| 12            | PL012×015E | 3.14<br> 0.32        | 3.14<br> 0.32 | 2.06<br> 0.21        | 2.06<br> 0.21  |                      |                |                      |                |                      |                |
| 13            | PL013×016E |                      |               | 2.16<br> 0.22        | 2.16<br> 0.22  |                      |                |                      |                |                      |                |
| 14            | PL014×018E |                      |               | 3.53<br>(0.36)       | 3.53<br>(0.36) |                      |                |                      |                |                      |                |
| 15            | PL015×019E |                      |               | 3.92<br>(0.40)       | 3.92<br>(0.40) | 2.94                 | 2.94<br>[0.30] |                      |                |                      |                |
| 16            | PL016×020E |                      |               | 4.02<br>{0.41}       | 4.02<br>(0.41) | 3.04<br>{0.31}       | 3.04<br>{0.31} |                      |                |                      |                |
| 17            | PL017×021E |                      |               | 4.02<br> 0.41        | 4.02<br> 0.41  | 3.14<br> 0.32        | 3.14<br> 0.32  |                      |                |                      |                |
| 18            | PL018×022E |                      |               | 4.02<br>{0.41}       | 4.02<br>(0.41) | 3.23<br> 0.33        | 3.23<br> 0.33  |                      |                |                      |                |
| 19            | PL019×024E |                      |               | 4.02<br>{0.41}       | 4.02<br>(0.41) | 3.63<br> 0.37        | 3.63<br>[0.37] |                      |                |                      |                |
| 20            | PL020×025E |                      |               |                      |                | 3.72<br>(0.38)       | 3.72<br>{0.38} | 5.49<br>(0.56)       | 5.49<br>(0.56) |                      |                |
| 22            | PL022×026E |                      |               |                      |                | 3.72<br>(0.38)       | 3.72<br>[0.38] | 5.59<br>{0.57}       | 5.59<br>{0.57} |                      |                |
| 24            | PL024×028E |                      |               |                      |                | 3.92<br> 0.40        | 3.92<br> 0.40  | 5.59<br> 0.57        | 5.59<br> 0.57  |                      |                |
| 25            | PL025×030E |                      |               |                      |                | 4.02<br> 0.41        | 4.02<br> 0.41  | 6.27<br> 0.64        | 6.27<br>(0.64) | 5.00<br>(0.51)       | 5.00<br>(0.51) |
| 28            | PL028×032E |                      |               |                      |                | 4.02<br> 0.41        | 4.02<br> 0.41  | 6.47<br> 0.66        | 6.47<br>(0.66) | 5.19<br>(0.53)       | 5.19<br>(0.53) |
| 30            | PL030×035E |                      |               |                      |                | 4.02<br> 0.41        | 4.02<br>[0.41] | 7.06<br>[0.72]       | 7.06<br>{0.72} | 5.59<br>(0.57)       | 5.59<br>{0.57} |
| 32            | PL032×036E |                      |               |                      |                | 4.02<br>(0.41)       | 4.02<br>(0.41) | 7.35<br>{0.75}       | 7.35<br>{0.75} | 5.88<br>(0.60)       | 5.88           |
| 35            | PL035×040E |                      |               |                      |                | 4.02<br> 0.41        | 4.02<br> 0.41  | 9.11<br> 0.93        | 9.11<br> 0.93  | 7.25<br> 0.74        | 7.25<br> 0.74  |
| 36            | PL036×042E |                      |               |                      |                |                      |                | 9.51<br> 0.97        | 9.51<br> 0.97  | 7.64<br>(0.78)       | 7.64<br> 0.78  |
| 38            | PL038×044E |                      |               |                      |                |                      |                | 9.90<br>{1.01}       | 9.90<br>{1.01} | 7.94<br>(0.81)       | 7.94<br>(0.81) |
| 40            | PL040×045E |                      |               |                      |                |                      |                | 11.7<br>{1.19}       | 11.7<br>{1.19} | 9.31<br>(0.95)       | 9.31<br>(0.95) |
| 42            | PL042×048E |                      |               |                      |                |                      |                | 12.3<br>[1.26]       | 12.3<br>{1.26} | 9.80<br>{1.00}       | 9.80<br> 1.00  |
| 45            | PL045×052E |                      |               |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} | 13.7<br>{1.40}       | 13.7<br> 1.40  |
| 48            | PL048×055E |                      |               |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 50            | PL050×057E |                      |               |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 55            | PL055×062E |                      |               |                      |                |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 56            | PL056×064E |                      |               |                      |                |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 60            | PL060×068E |                      |               |                      |                |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 63            | PL063×071E |                      |               |                      |                |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 65            | PL065×073E |                      |               |                      |                |                      |                |                      |                | 13.7<br>{1.40}       | 13.7<br>{1.40} |
| 70            | PL070×079E |                      |               |                      |                |                      |                |                      |                | 13.7<br> 1.40        | 13.7<br> 1.40  |


### 2. Rough bore pressure flange

Special pressure flange and pressure bolts are MTO upon request

Special pressure bolts are JIS Strength Class 10.9.

Pressure flange is installed with tap holes at the hub or boss (coupling side hub) end faces.

Refer to page 40 for the recommended finished dimensions.

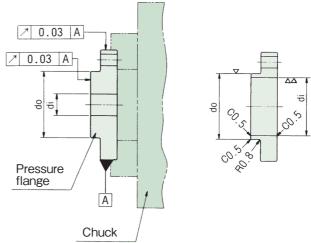


### Rough Bore Pressure Flange Dimensions

| nough                        | ם וטב |                      | 5000                  | 11 6 | 1 10 | פו וב | ,e D     | 11110 | 51 IS | 10115            |                            |       |                          |    | Unit: mm                          |
|------------------------------|-------|----------------------|-----------------------|------|------|-------|----------|-------|-------|------------------|----------------------------|-------|--------------------------|----|-----------------------------------|
| Pressure flange<br>Model No. | А     | Rougl<br>measur<br>B | n bore<br>ements<br>C | D    | Е    | F     | G<br>PCD | Н     | J     | #1<br>Mass<br>kg | Inertia<br>moment<br>kg·m² |       | Pressure bo<br>× the nur |    | Tap side screw<br>effective depth |
| TGX10-F                      | 30    | 14.9                 | 10.1                  | 5    | 6    | 11    | 22       | 4     | 4.5   | 0.037            | 0.043                      | 0.173 | M4×14 ℓ                  | 4  | M4× 8 ℓ                           |
| TGX20-F                      | 40    | 24.8                 | 10.1                  | 6    | 6    | 12    | 32       | 6     | 4.5   | 0.080            | 0.150                      | 0.600 |                          |    | M4× 8 ℓ                           |
| TGX35-F                      | 55    | 39.8                 | 15.1                  | 6    | 6    | 12    | 47       | 8     | 4.5   | 0.16             | 0.598                      | 2.39  | M4×14 ℓ                  | 8  | M4× 8 ℓ                           |
| TGX50-F                      | 81    | 56.8                 | 20.2                  | 7    | 10   | 17    | 69       | 8     | 6.6   | 0.53             | 4.240                      | 16.96 | M6×22ℓ                   | 8  | M6×12ℓ                            |
| TGX70-F                      | 101   | 78.7                 | 25.2                  | 7    | 10   | 17    | 89       | 10    | 6.6   | 0.87             | 10.83                      | 43.33 | M6×22ℓ                   | 10 | M6×12ℓ                            |

<sup>\*1, \*2</sup> Weight and GDs are together as 1 set of pressure flange (max. bore) and pressure bolt. Note: All products are MTO.




# 3. Pressure flange recommended finishing dimensions

### (1) Centering

Chuck and center based on the flange external diameter. (Refer to the diagram on the right)

### (2) Recommended dimensions

Depending on Power Lock size, choose the finishing dimensions from the chart below.



Pressure flange centering and processing diagram

Unit: mm

| Bore<br>diameter | Power Lock   | TGX10  | ) (C)<br>F  | TGX20   | ) (C)<br>F  | TGX35   | 5 (C)<br>F  | TGX50   | ) (C)<br>F  | TGX70   | Unit: mm  (C) |
|------------------|--------------|--------|-------------|---------|-------------|---------|-------------|---------|-------------|---------|---------------|
| (mm)             | Model No.    | do _0_ | di +0.1     | do _0.1 | di +0.1       |
| 10               | PL010×013E   | 12.9   | 10.1        | 12.9    | 10.1        |         |             |         | 1           |         |               |
| 12               | PL012 × 015E | 14.9   | 12.1        | 14.9    | 12.1        |         | 1           |         | 1           |         | 1             |
| 13               | PL013 × 016E |        | 1           | 15.9    | 13.1        |         |             |         | 1           |         | 1             |
| 14               | PL014×018E   |        | I<br>I      | 17.9    | 14.1        |         | 1           |         | 1           |         | 1             |
| 15               | PL015 × 019E |        | 1           | 18.9    | 15.1        | 18.9    | 15.1        | 18.9    | 15.1        |         | 1             |
| 16               | PL016 × 020E |        | 1           | 19.9    | 16.1        | 19.9    | 16.1        | 19.9    | 16.1        |         | 1             |
| 17               | PL017 × 021E |        | 1           | 20.9    | 17.1        | 20.9    | 17.1        | 20.9    | 17.1        |         |               |
| 18               | PL018 × 022E |        | 1<br>1<br>1 | 21.9    | 18.1        | 21.9    | 18.1        | 21.9    | 18.1        |         | <br>          |
| 19               | PL019×024E   |        | I<br>I<br>I | 23.8    | 19.2        | 23.8    | 19.2        | 23.8    | 19.2        |         | <br>          |
| 20               | PL020 × 025E |        | 1           | 24.8    | 20.2        | 24.8    | 20.2        | 24.8    | 20.2        |         | 1             |
| 22               | PL022 × 026E |        | 1           |         | 1           | 25.8    | 22.2        | 25.8    | 22.2        |         | 1             |
| 24               | PL024 × 028E |        | 1           |         | 1           | 27.8    | 24.2        | 27.8    | 24.2        |         | 1             |
| 25               | PL025 × 030E |        | 1           |         | 1           | 29.8    | 25.2        | 29.8    | 25.2        | 29.8    | 25.2          |
| 28               | PL028 × 032E |        | I<br>I      |         | 1           | 31.8    | 28.2        | 31.8    | 28.2        | 31.8    | 28.2          |
| 30               | PL030 × 035E |        | 1           |         | 1           | 34.8    | 30.2        | 34.8    | 30.2        | 34.8    | 30.2          |
| 32               | PL032 × 036E |        | 1           |         | 1           | 35.8    | 32.2        | 35.8    | 32.2        | 35.8    | 32.2          |
| 35               | PL035 × 040E |        | 1           |         | 1           | 39.8    | 35.2        | 39.8    | 35.2        | 39.8    | 35.2          |
| 36               | PL036 × 042E |        | 1<br>1<br>1 |         | <br>        |         | <br>        | 41.8    | 36.2        | 41.8    | 36.2          |
| 38               | PL038 × 044E |        | 1<br>1<br>1 |         | <br>        |         | 1<br>1<br>1 | 43.8    | 38.2        | 43.8    | 38.2          |
| 40               | PL040 × 045E |        | I<br>I<br>I |         | !<br>!      |         | 1<br>1<br>1 | 44.8    | 40.2        | 44.8    | 40.2          |
| 42               | PL042 × 048E |        | 1           |         | 1           |         | 1           | 47.8    | 42.2        | 47.8    | 42.2          |
| 45               | PL045 × 052E |        |             |         |             |         |             | 51.8    | 45.2        | 51.8    | 45.2          |
| 48               | PL048 × 055E |        | 1           |         |             |         |             | 54.8    | 48.2        | 54.8    | 48.2          |
| 50               | PL050 × 057E |        | 1           |         | 1           |         | 1           | 56.8    | 50.2        | 56.8    | 50.2          |
| 55               | PL055 × 062E |        | 1<br>1<br>1 |         | 1           |         | 1           |         | 1<br>1<br>1 | 61.8    | 55.2          |
| 56               | PL056 × 064E |        | 1<br>1<br>1 |         | 1           |         |             |         | 1<br>1<br>1 | 63.8    | 56.2          |
| 60               | PL060 × 068E |        | 1<br>1<br>1 |         | 1           |         | 1           |         | 1<br>1<br>1 | 67.8    | 60.2          |
| 63               | PL063 × 071E |        | 1<br>1<br>1 |         | <br>        |         | 1<br>1<br>1 |         | 1<br>1<br>1 | 70.8    | 63.2          |
| 65               | PL065 × 073E |        | 1<br>1<br>1 |         | 1 1 1       |         | 1 1 1       |         | 1<br>1<br>1 | 72.8    | 65.2          |
| 70               | PL070 × 079E |        | I<br>I<br>I |         | 1<br>1<br>1 |         | I<br>I<br>I |         | I<br>I<br>I | 78.7    | 70.3          |

Refer to the instruction manual for information on hub bore finishing when installing the Power Lock.

# Torque Guard TGM Series

# **Features**

Highly accurate sealed type. Excels in wet, oily and dusty environments.

### **Sealed construction**

The sealed construction is highly resistant to dust, oil and water penetration, and oil leakage as well.

### Highly accurate trip torque

Accuracy of consecutive repeated trip torque fluctuations is within  $\pm 5\%$ .

### Single-position

Because the cam follower and pocket of the cam shaft engage together, there is no phase shift between the drive side and the driven side.

### Non-backlash

There is no backlash.

### **Automatic reset**

### Long life

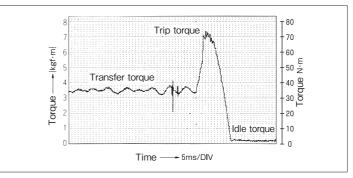
Can withstand more than one hundred thousand trips.

# LS detection plate for overload detector

If the Torque Guard trips, the limit switch is actuated because the LS detection plate slides along the axial direction.

### Simple torque adjustment

By simply turning the adjusting screw with a hexagonal Allen wrench, precise torque can be set.

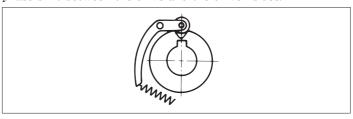

# No greasing necessary

The Torque Guard TGM Series is packed in high quality grease before shipment, so greasing is not necessary.

### High precision trip torque

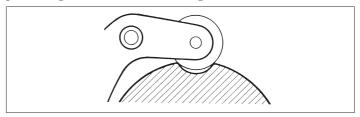
Accuracy of consecutive repeated trip torque fluctuations is within  $\pm 5\%$ .

One (1) high precision cam follower pressurizes tightly from the radial direction in the precisely machined pocket. A highly rigid and stable load rate rectangular spring is used. Trip movement is a rolling movement, so even a repeat trip produces almost no torque variation.



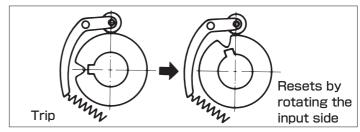

### Sealed construction

Covered in a special aluminum alloy casing, the TGM Series is sealed, so it is almost impossible for dust, oil or water to penetrate it. Therefore, it does not affect trip torque precision, making it an ideal overload protection device.


### Single-position

The cam follower and pocket engage together, so there is no phase shift between the drive and the driven sides.




### ●Non-backlash

The cam follower and pocket's engagement is a 2 point contact pressed against each other, meaning there is no backlash.



### Automatic reset

Once the cause of overload is removed, the Torque Guard automatically moves back to its original position by rotating the input side a little (at less than 50r/min), or by inching the motor.



### Long life

The TGM Series is able to withstand more than one hundred thousand trips. Due to strong materials, thermal processing and precision machining, the cam follower and pocket can withstand even severe repeat trips and not collapse. During trip, the idling part uses a heavy-duty needle bearing, so there is almost no friction.

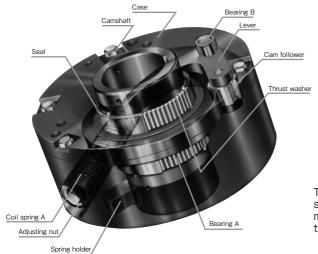
### LS detecting plate for overload detector

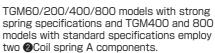
When the Torque Guard trips the LS detecting plate slides in the axial direction, so it is easy to actuate the limit switch, shut off the power or set off the alarm.

When tripping it can be used whether it stops on the camshaft side or the housing (Torque Guard case) side. The LS detecting plate can be mounted on all models.

### Easy to use

The camshaft and case can be used on either the drive or driven sides. As well, it can be used in either direction of rotation. For the drive member, you can choose between using a chain, pulley or gear. Assembling with a coupling is also possible. Refer to page 44 to see the assembly of a Torque Guard coupling with a roller chain coupling.

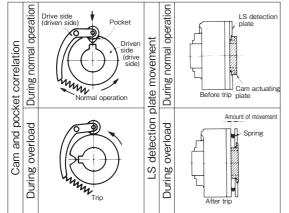

### Torque setting is easy


By simply turning the adjusting screw with a hexagonal Allen Wrench, precise torque can be set. As well, the adjusting nut is on the outer surface of the Torque Guard, so torque setting can be done easily.

### No need to lubricate

The Torque Guard TGM Series is packed in high quality grease before shipment, so greasing is not necessary.

# Construction and Operating Principles






- 1 Adjusting screw Coil spring A
- Spring seat
- 4 Case **6**Lever
- 6Fulcrum pin
- Bearing B
- 8 Roller pin

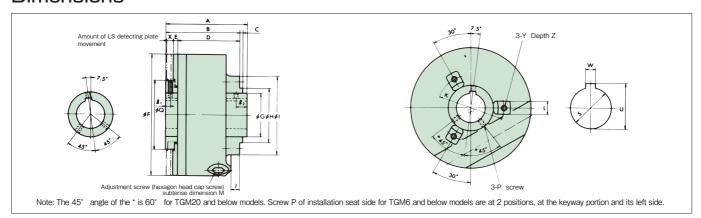
- Seal
- **®**Bearing A
- Thrust washer Cam shaft
- Cover
- **®**LS detecting plate
- Cam actuation plate
- Coil spring B
- **®**Spring pin
- Mexagonal bolt
- A Hexagonal set screw
- 22Hexagonal set screw

- 1. The cam follower transmits torque by engaging with the camshaft pocket in a radial direction. When the machine is overloaded, the cam follower pops out of
- the pocket, and completely separates from the overload. 2. The cam follower pocket is precision machined and heat
- treated, so it is able to maintain high torque precision for extended periods of time.
- 3. The cam follower and pocket are non-backlash, with a 2-point contact system.
- 4. Using the leverage on one rectangular coil spring pressurizes the cam follower, so it is able to give high precision pressure.
- 5. Torque level is infinitely adjustable.
- 6.Due to overload, the idling during trip is received by 5 needle bearings, so there is no slide, and idling friction torque is
- 7.Because the housing and cover are made from a solution treated aluminum, it has a light but strong construction.
- 8.Due to its sealed construction, it is highly difficult for dust, water or oil to penetrate the TGM Series.
- 9.If the Torque Guard trips because of overload, the LS detecting plate slides in the axis direction, so by operating the limit switch, overload detection is easy.



1. Torque is transmitted by the engagement of the cam follower and the pocket with a 2 point contact system.

The method to pressurize the cam follower to the cam pocket is to hold it by


one rectangular coil spring in a radial direction.

Therefore there is no backlash, allowing it to function as a high trip torque precision overload protection device. Reset is carried out using an automatic reset system, so as the cam follower settles into its pocket position, operation resumes. As it is a two-point contact, there is no phase shift from the original

- 2. When overloaded, the cam follower comes out of its pocket and starts rolling on the outer diameter of the camshaft. As there is no slide section, the idling friction torque is small, making it a highly durable device. As well, the simple one position engagement construction of the TGM Series means its high trip torque precision does not diminish.
- 3. When the Torque Guard trips, the LS detecting plate slides in the axis direction. From this point, the limit switch can be actuated and the power can be turned off. The alarm can also be sounded. For each one trip, the LS detecting plate slides three times.

position.

### **Dimensions**



### ■ Transmissible capacity

Unit: mm

| Model No. | Set torque range         | Max. rpm | Bore    | Stock bore diameter | Semi-standard bore diameter | Inertia moment                         | GD <sup>2</sup>                        | Mass |
|-----------|--------------------------|----------|---------|---------------------|-----------------------------|----------------------------------------|----------------------------------------|------|
|           | N·m {kgf·m}              | ፠ r/min  | range   | H7                  | H7                          | ×10 <sup>- 2</sup> kg ⋅ m <sup>2</sup> | × 10 <sup>- 2</sup> kgf⋅m <sup>2</sup> | kg   |
| TGM3      | 1.5 ~ 3.7 {0.15 ~ 0.38}  | 600      | 10 ~ 14 | 14                  | 10, 12                      | 0.0425                                 | 0.17                                   | 0.6  |
| TGM6      | 2.5 ~ 6.4 \ 0.26 ~ 0.65\ | 600      | 10 ~ 14 | 14                  | 10, 12                      | 0.0425                                 | 0.17                                   | 0.6  |
| TGM20     | 6.4 ~ 20 {0.65 ~ 2.0}    | 500      | 14 ~ 20 | 20                  | 14, 16, 18                  | 0.168                                  | 0.67                                   | 1.1  |
| TGM60     | 20 ~ 69 {2.0 ~ 7.0}      | 300      | 20 ~ 30 | 30                  | 20, 22, 25, 28              | 0.938                                  | 3.75                                   | 2.5  |
| TGM200    | 68 ~ 225 (6.9 ~ 23)      | 200      | 28 ~ 50 | 50                  | 30, 35, 40, 45              | 4.03                                   | 16.1                                   | 5.4  |
| TGM400    | 225 ~ 451 {23 ~ 46}      | 150      | 38 ~ 60 | _                   | 60                          | 40.0                                   | 160                                    | 17.2 |
| TGM800    | 451 ~ 902 (46 ~ 92)      | 150      | 38 ~ 60 | _                   | 60                          | 40.0                                   | 160                                    | 17.2 |

<sup>%1.</sup> Cam shafts for semi-standard bore diameters are in stock for quick delivery.

■ Dimensions

Unit: mm

| Model No. | А           | В   | С | D   | Е | F   | G    | H<br>h <i>7</i> | _   | J  | K   | L  | М  | Р  | Q   | <b>l</b> 1 | <b>l</b> 2 | S<br>H7 | C    | W  | Χ | Υ   | Z  |
|-----------|-------------|-----|---|-----|---|-----|------|-----------------|-----|----|-----|----|----|----|-----|------------|------------|---------|------|----|---|-----|----|
| TGM3      | 60          | 57  | 2 | 48  | 3 | 80  | 22   | 30              | 50  | 3  | 40  | 8  | 5  | M4 | 40  | 4          | 6          | 14      | 16.3 | 5  | 4 | M 4 | 8  |
| TGM6      | 60          | 57  | 2 | 48  | 3 | 80  | 22   | 30              | 50  | 3  | 40  | 8  | 5  | M4 | 40  | 4          | 6          | 14      | 16.3 | 5  | 4 | M 4 | 8  |
| TGM20     | 70          | 66  | 3 | 57  | 3 | 100 | 30   | 40              | 60  | 4  | 50  | 10 | 6  | M4 | 50  | 4          | 7          | 20      | 22.8 | 6  | 4 | M 5 | 10 |
| TGM60     | 89          | 81  | 3 | 68  | 5 | 133 | 47.6 | 60              | 86  | 7  | 73  | 14 | 12 | M5 | 76  | 6          | 12         | 30      | 33.3 | 8  | 6 | M 6 | 13 |
| TGM200    | 110         | 100 | 3 | 85  | 5 | 178 | 69.9 | 82              | 133 | 14 | 114 | 20 | 12 | M6 | 105 | 7          | 14         | 50      | 53.8 | 14 | 6 | M10 | 19 |
| TGM400    | 1 <i>57</i> | 147 | 9 | 131 | 5 | 273 | 88.9 | 114             | 190 | 17 | 165 | 28 | 17 | M8 | 124 | 7          | 16         | 60      | 64.4 | 18 | 8 | M12 | 28 |
| TGM800    | 1 <i>57</i> | 147 | 9 | 131 | 5 | 273 | 88.9 | 114             | 190 | 17 | 165 | 28 | 17 | M8 | 124 | 7          | 16         | 60      | 64.4 | 18 | 8 | M12 | 28 |

<sup>\*\*1.</sup>The model numbers in bold are stock items, and the rest are assembled for shipment.
2.The keyway is made with JIS1301-1996 (new JIS standard) dimensions.
3.Minimum torque is set temporariry when shipped.

### Semi-standard

### 1. Torque setting

If necessary, torque can be set at TEM's factory before shipment. Torque setting tolerance is within  $\pm 5\%$ . The set torque value is on the nameplate, and the adjusting nut is coated with Loctite 242, or its equivalent, and tightened. When ordering, indicate set torque value (kgf · m) after bore diameter. (Please refer to the table on the right)

### 2. Weak spring and strong spring specifications

For when it is necessary to operate with a trip torque other than the standard torque value range:

- (1) TGM6 and TGM800 do not have weak spring specifications.
- (2) The standard torque range can be replaced by the weak or strong spring torque ranges on the nameplate.
- (3) The minimum and maximum torque indicator on the nameplate does not change for the weak and strong springs.
- (4) When ordering, indicate weak spring (WS) or strong spring (SS) in the last part of the product number.

| Model No. | Weak spring, torque range N·m {kgf·m} | Reinforced spring, torque range N·m {kgf·m} |
|-----------|---------------------------------------|---------------------------------------------|
| TGM3(C)   | $0.59 \sim 1.5   0.06 \sim 0.15  $    |                                             |
| TGM6(C)   |                                       | 6.0 ~ 12.7 (0.61 ~ 1.3)                     |
| TGM20(C)  | 3.7 ~ 12 {0.38 ~ 1.2}                 | 7.3 ~ 23 (0.74 ~ 2.3)                       |
| TGM60(C)  | 7.6 ~ 26 (0.78 ~ 2.7)                 | 44 ~ 105 {4.5 ~ 10.7}                       |
| TGM200(C) | 30 ~ 98 (3.1 ~ 10)                    | 101 ~ 289 {10.3 ~ 29.5}                     |
| TGM400(C) | 118 ~ 235 {12 ~ 24}                   |                                             |
| TGM800(C) |                                       | 532 ~ 1060 (54.3 ~ 108)                     |

### Model No.

Size — Set torque (unit: kgf·m, No. not displayed if torque not set)

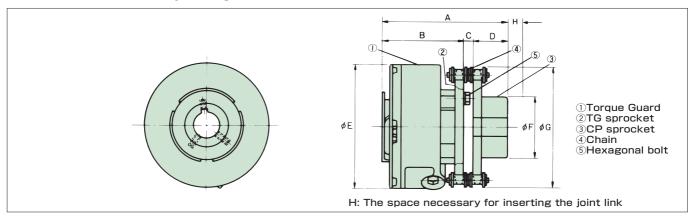
Spring specifications SS: Reinforced spring WS: Weak spring

Note 1) Bore diameter tolerance is H7, keyway is made with JIS1301-1996 (new JIS standard) dimensions.

2) In case trip torque is required to set before shipment, allowable tolerance of setting torque is  $\pm 5\%$ .

Nothing: Standard spring

<sup>2.</sup> Please contact TEM for a consultation if you want to use the Torque Guard at an rom at or above the maximum speed.


<sup>3.</sup> The keyway is made with JIS1301-1996 (new JIS standard) dimensions.

### Torque Guard coupling-sprocket combination

### ■ Torque Guard coupling

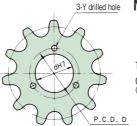
This is the Torque Guard and roller chain coupling combination series. It is a Torque Guard with high trip torque accuracy and an easy to use roller chain coupling, all in one. It is ideal for direct coupling between the drive and driven machines. (In the case it is coupled with a nonbacklash coupling, contact TEM for a consultation.)

### Transmissible capacity/dimensions



|                                          |                        |                        |                        |                                           |                                        |    |       |       |      |    |     |     |     |    |          |            |                                               | Unit : mm                                               |
|------------------------------------------|------------------------|------------------------|------------------------|-------------------------------------------|----------------------------------------|----|-------|-------|------|----|-----|-----|-----|----|----------|------------|-----------------------------------------------|---------------------------------------------------------|
| Torque<br>Guard<br>Coupling<br>Model No. | Set torque range       | Max.<br>rpm<br>※ r/min | Standard bore diameter | Guard bore Semi-standard bore diameter H7 | Coup<br>bo<br>Rough bore<br>diameter*1 |    | A     | В     | U    | D  | Е   | F   | G   | Н  | sprocket | Mass<br>kg | Inertia<br>moment<br>×10 <sup>-2</sup> kgf·m² | GD <sup>2</sup><br>×10 <sup>-2</sup> kgf·m <sup>2</sup> |
| TGM3C                                    | 1.5 ~ 3.7  0.15 ~ 0.38 | 600                    | 14                     | 10,12                                     | 12.5                                   | 30 | 90    | 64.2  | 5.0  | 20 | 80  | 50  | 70  | 0  | RS35-20  | 1.12       | 0.07                                          | 0.28                                                    |
| TGM6C                                    | 2.5 ~ 6.4  0.26 ~ 0.65 | 800                    | 14                     | 10,12                                     | 12.3                                   | 30 | 70    | 04.2  | 5.0  | 20 | 80  | 30  | 70  | 7  | K333-20  | 1.12       | 0.07                                          | 0.26                                                    |
| TGM20C                                   | 6.4 ~ 20   0.65 ~ 2.0  | 500                    | 20                     | 14,16,18                                  | 12.5                                   | 32 | 100   | 72.2  | 5.8  | 22 | 100 | 53  | 82  | 7  | RS35-24  | 1.78       | 0.218                                         | 0.87                                                    |
| TGM60C                                   | 20 ~ 69 {2.0 ~ 7.0}    | 300                    | 30                     | 20,22,25,28                               | 12.5                                   | 42 | 120.6 | 88.2  | 7.4  | 25 | 133 | 63  | 117 | 17 | RS40-26  | 4.15       | 1.21                                          | 4.81                                                    |
| TGM200C                                  | 68 ~ 225 (6.9 ~ 23)    | 200                    | 50                     | 30,35,40,45                               | 18                                     | 55 | 163.3 | 111.7 | 11.6 | 40 | 178 | 83  | 188 | 26 | RS60-28  | 11.8       | 6.80                                          | 27.5                                                    |
| TGM400C                                  | 225 ~ 451  23 ~ 46     | 150                    |                        | 60                                        | 28                                     | 75 | 221.9 | 161.6 | 152  | 45 | 272 | 107 | 251 | 20 | RS80-28  | 31         | 50.8                                          | 203                                                     |
| TGM800C                                  | 451 ~ 902  46 ~ 92     | 130                    | 50 –                   | 00                                        | 20                                     | /3 | 221.9 | 101.0 | 13.3 | 43 | 2/3 | 107 | 231 | 38 | K30U-28  | 31         | 50.8                                          | 203                                                     |

<sup>%1.</sup> All model numbers are MTO.


- 2. Apply the lubricant such as molybdenum disulfide to the chain and top of the sprocket teeth periodically (every 2000 hours).
- 3. If you intend to use the Torque Guard at a higher rpm than that listed above, contact TEM for a consultation.

### Sprocket combination

When using a sprocket with a drive member, select the appropriate sprocket from the chart below.

This chart lists:

- (1) Available sprocket machining dimensions
- (2) The minimum number of sprocket teeth and chain size, so the roller chain and Torque Guard do not interfere with each other.



### Model No.

 $TGM60C - D30 \times C40J - SS - 10.0$ Size <sup>L</sup>Set torque (unit: kgf·m, No. not displayed if torque not set)

Torque Guard side bore diameter Coupling side bore diameter (No symbol if bore not finished)

Spring specifications SS:Reinforced spring WS:Weak spring Nothing:Standard spring

Tightening method Keyway: J: new JIS standard, E: old JIS second grade, Special: no symbol

| Torque Guard | Finished        | sprocket dir | mensions | Min. No. of sprocket teeth |             |       |       |       |       |       |       |  |  |  |
|--------------|-----------------|--------------|----------|----------------------------|-------------|-------|-------|-------|-------|-------|-------|--|--|--|
| Model No.    | d <sub>H7</sub> | D            | Y        | RS 25                      | RS 35       | RS 40 | RS 50 | RS 60 | RS 80 | RS100 | RS120 |  |  |  |
| TGM3         | 30              |              |          | *30                        | *30         | 24    | 20    |       |       |       |       |  |  |  |
| TGM6         | 30              | 40           | 4.5      | *30                        | *30         | 24    | 20    |       |       |       |       |  |  |  |
| TGM20        | 40              |              |          | *34                        | *34 *37 *28 |       | 24    | 20    |       |       |       |  |  |  |
| TGM60        | 60              | 73           | 6.6      |                            | *32         | 26    | 30    | 26    | 20    |       |       |  |  |  |
| TGM200       | 82              | 114          | 11.0     |                            |             | *37   | 30    | 26    | 20    | 17    |       |  |  |  |
| TGM400       | 114             | 165          | 14.0     |                            |             |       | *41   | 35    | *27   | 24    | 20    |  |  |  |
| TGM800       | 114             | 165          | 14.0     |                            |             |       | *41   | 35    | *27   | 24    | 20    |  |  |  |

Not the standard number of sprocket teeth.

Note: Verify the chain transmissible capacity when determining the number of sprocket teeth. Note: Insert the joint link from the outside of the sprocket.

### Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine. For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death.

### 1. Setting trip torque

$$\begin{split} T_{\text{P}} &= T_{\text{L}} \times S.F = \frac{60000 \times P}{2\,\pi\,\cdot\,n} \times S.F \, \left| T_{\text{P}} = \frac{974 \times P}{n} \times S.F \right| \\ T_{\text{P}} &= Trip \; torque \quad N \cdot m |kgf \cdot m| \\ P &= Transmittance \; power \quad kW \qquad S.F = Service \; factor \\ n &= rpm \quad r/min \end{split}$$

- (1) From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1

| Service factor | Operating conditions                                         |
|----------------|--------------------------------------------------------------|
| 1.25           | In the case of normal start up/stop, intermittent operation  |
| 1.50           | In the case of a heavy shock load or forward-reverse driving |

### 2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_L + I_t}{I_S} \qquad \left\{ K = \frac{GD_L^2 + GD_t^2}{GD_S^2} \right\} \qquad Tt = \frac{K \cdot T_S + T_L}{1 + K} \qquad Tp = SF \cdot Tt$$

K : Inertia ratio

 $\mathsf{I}_S$  : Drive side inertia moment  $(k\mathbf{g}\!\cdot\!m^2)$ 

{GD<sub>s</sub><sup>2</sup>: Drive side GD<sup>2</sup> (kgf⋅m<sup>2</sup>)}

 $I_L$  : Load side inertia moment  $(k{\bf g}\!\cdot\! m^2)$ 

 $\{GD_L^2 : load side GD^2 (kgf \cdot m^2)\}$ 

It : Torque Guard inertia moment (kg·m²)

 $\{GD_t^2 : Torque Gard GD^2 (kgf \cdot m^2)\}$ 

 $T_s$ : Motor starting torque  $(N \cdot m) \{kgf \cdot m^2\}$ 

 $T_t$ : Torque in Torque Guard during start up  $(N \cdot m) \{ kgf \cdot m \}$ 

$$\begin{split} & T_L & \text{: Load torque } (N \cdot m) \{ kgf \cdot m \} \\ & T_P & \text{: Trip torque } (N \cdot m) \{ kgf \cdot m \} \end{split}$$

S.F.: Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD<sup>2</sup> and torque value.

### 3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large). In this case install it as close to the load side as possible.

### 4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

### 5. Verifying bore diameter

Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

### 6. Confirming rpm

Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.



### Torque setting

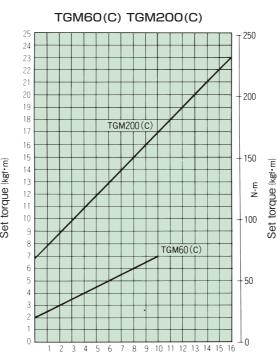
By simply turning the adjusting screw with a hexagonal Allen wrench, precise torque can be set.

1. The minimum torque value is set for shipment. The top surface of the adjustable screw is adjusted to the minimum torque (torque indicator 1) printed on the nameplate. This is the base tightening quantity.

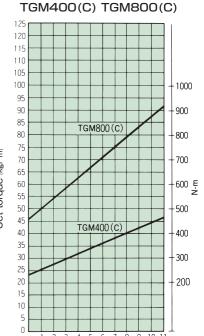


- Before setting the torque, apply Loctite 242 or an equivalent adhesive to the exposed surface of the adjustable screw's thread portion. After setting torque, it becomes anti-loosing.
- 3. From the "Tightening Amount Torque Correlation Chart"(below), find the adjusting screw tightening angle equivalent to the predetermined trip torque. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount Torque Correlation Chart", so use these values only as a rough guide.

- 4. Do not set torque lower than the minimum torque (torque indicator 1 on the nameplate). If it is necessary to use a torque level lower than the minimum, use a weak spring type.
- 5. Do not turn the adjusting screw when the Torque Guard is in a tripped state.
- 6. Torque setting before shipment is available. (Please refer to page 43).


| Model No. | Amount of torque variation per one (1) rotation N·m {kgf·m} | Total number of rotations |
|-----------|-------------------------------------------------------------|---------------------------|
| TGM3      | 0.28 (0.029)                                                | 8                         |
| TGM6      | 0.48 (0.049)                                                | 8                         |
| TGM20     | 1.02 (0.10)                                                 | 13                        |
| TGM60     | 4.90 (0.5)                                                  | 10                        |
| TGM200    | 9.80 {1.0}                                                  | 16                        |
| TGM400    | 20.6 {2.1}                                                  | 11                        |
| TGM800    | 41.2 (4.2)                                                  | 11                        |

Set torque = min. torque + (amount of torque variation per one (1) rotation X total number of rotations of the adjustable screw)


### Tightening Amount-Torque Correlation Chart

### TGM3(C) TGM6(C) TGM20(C) 23 2.1 2 0 - 20 1 0 TGM20(C) 1.7 Set torque {kgf-m} 15 1.4 Set torque (kgf N-n 1.0 10 0.9 0.8 0.7 TGM6(C 0.6 0.5 0.4 TGM3(C) 0.3 0.2





No. of rotations of the adjustable screw.

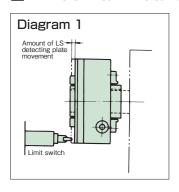


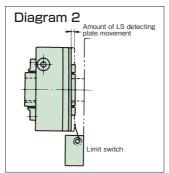
No. of rotations of the adjustable screw.

### Overload detection

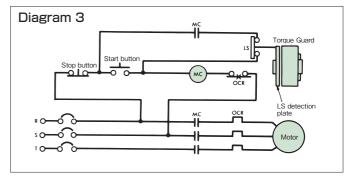
Using the limit switch, overload can be detected easily. If the Torque Guard trips due to overload, the cam follower will disengage from the pocket and the camshaft and main unit (case) will idle. At the same time, the LS detecting plate slides in the axial direction.

The limit switch detects this movement, shuts the power off and sets off an alarm. Whether the stopping side is on the camshaft side or the main unit case side, overload can be detected. For every one trip, the LS detecting plate slides three times.


- (1) Chart 4 shows LS detecting plate movement and force during trip.
  - Choose a limit switch from chart 4 that meets the "movement until operation" and its "necessary amount of force".
- (2) Diagrams 2 and 3 are limit switch installation examples.


- (3) Connect the limit switch's "b contact" parallel to the start button's contact.
- (4) Diagram 4 shows an example of a typical circuit. TEM recommends using a built-in holding circuit.

### Chart 4


| Model No. | Amount of movement mm | Force when<br>moving<br>N (gf) |
|-----------|-----------------------|--------------------------------|
| TGM3      | 4                     | 3.9 {400}                      |
| TGM6      | 4                     | 3.9 {400}                      |
| TGM20     | 4                     | 3.9 {400}                      |
| TGM60     | 6                     | 3.9 (400)                      |
| TGM200    | 6                     | 5.4 {550}                      |
| TGM400    | 8                     | 5.9 (600)                      |
| TGM800    | 8                     | 5.9 (600)                      |

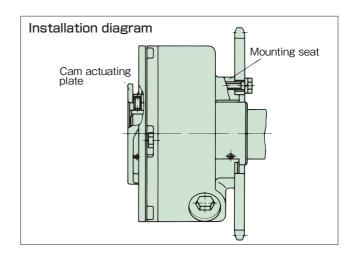
### ■ Limit Switch Installation Example





### ■ Circuit Example




### Installation

### 1. Installing to the axis

- A shaft diameter tolerance of h7 for installing the Torque Guard to the shaft is recommended. Use a JIS 1301-1996 (New JIS standards) parallel key. Allow some clearance between the top of the key and keyway
- When installing the cam actuating plate to the shaft, tighten bolts in three places. (For the key, 1 place; for the shaft, 2 places)
- When mounting the Torque Guard to the end face of the shaft, depending on the installation method, the cam actuating plate set screws cannot be used. In this case use the tap holes on the mounting seat side.
   Set screws for these tap holes are not included, so use bolts with a length that fits the bore diameter.
   Take care to ensure that the head of the set screws do not come out from the outer diameter of the camshaft.
  - If the head of the screws come out, they will interfere with the inner diameter and lateral side of the mounting seats when the Torque Guard trips.
- If during operation there is a chance vibration will cause the screws to loosen, apply Loctite 242 or an equivalent for anti-loosening.

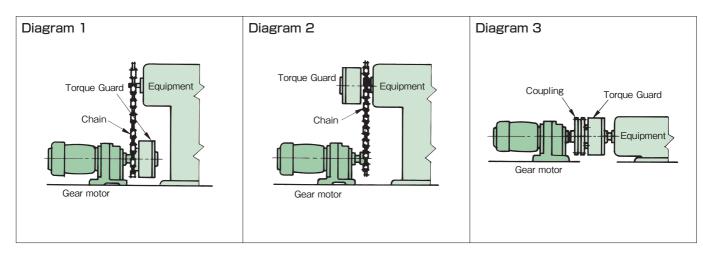
### 2. Installation of drive member

- By utilizing 3 mounting seats, tighten the bolts with the torque shown in chart 2 to install the sprockets, pulleys, gears and couplings to the housing.
- Refer to page 44 for sprocket installation. If it is necessary to combine a TSUBAKI Power Lock (keyless locking device) with a non-backlash coupling, contact TEM for a consultation.





### 3. Installation bolts


The screw-in length of the mounting seat installation bolts and their tightening torque recommended values are listed on table. As well, use JIS B1001 2 class and higher class prepared holes for installation bolts.

### Table

| Model No. | Bolt screw-in length (mm) | Bolt tightening torque N·m {kgf·m} | Prepared hole diameter for installation bolt (mm) |
|-----------|---------------------------|------------------------------------|---------------------------------------------------|
| TGM3      | 6~ 7                      | 2.0 ~ 2.9 (0.2 ~ 0.3)              | 4.5                                               |
| TGM6      | 6~ 7                      | 2.0 ~ 2.9 (0.2 ~ 0.3)              | 4.5                                               |
| TGM20     | 8 ~ 9                     | 3.9 ~ 5.9 (0.4 ~ 0.6)              | 5.5                                               |
| TGM60     | 9~11                      | 6.9 ~ 11 {0.7 ~ 1.1}               | 6.6                                               |
| TGM200    | 15 ~ 17                   | 34 ~ 51 {3.5 ~ 5.2}                | 11.0                                              |
| TGM400    | 18 ~ 25                   | 59 ~ 89 {6.0 ~ 9.1}                | 14.0                                              |
| TGM800    | 18 ~ 25                   | 59 ~ 89 {6.0 ~ 9.1}                | 14.0                                              |

### 4. Connecting

The input/output connection is placed between the variator, reducer or indexing drive device and the device/machine. Diagrams 1, 2 and 3 show typical connecting examples.



### Resetting

As it is an automatic reset system, just re-starting the drive side can automatically reset it.

- 1. When the Torque Guard trips due to overload, stop the rotation and remove the cause of the overload.
- 2. When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor. To avoid injury, do not reset the Torque Guard by hand.
- 3. A distinct clicking sound is made when the cam follower settles in its pocket.

### Grease

Torque Guard TGM Series are packed in high quality grease before shipment, so they can be used as is. Under normal conditions greasing is not necessary.

### Grease used:

| Exxon Mobil | Mobilux EP2 |
|-------------|-------------|
|-------------|-------------|

# **Torque Gard TGZ Series**

### **Features**

TGZ Series can be used as a simple layout release type protection device or an ON-OFF clutch.

### Release type

After tripping due to overload, the input side freely rotates. Even a high-speed shaft can be operated worry-free.

### Resetting by external force

After the Torque Guard has been stopped, remove the cause of overload. Then give load to the axial direction manually or with external force.

### **ON-OFF function**

The rotation (ON) or shut-off (OFF) functions are available arbitrarily. They can be used as an accurate mechanical type ON-OFF clutch.

### Single-position type

This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

# Accuracy of consecutive repeated trip torque fluctuations is within ±10%.

Even with repeated trips, the fluctuating trip torque variation is always within  $\pm 10\%$ .

### Easy torque adjustment

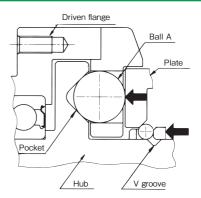
Just by turning the adjusting nut, trip torque can be easily set.

# Easy to see torque indicator

By using the revolution indicator and angle indicator, set torque can be monitored at any time.

### Standard type overload detecting sensor

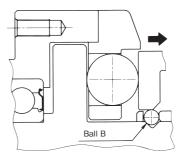
It can detect overload by the non-contact type TG Sensor (refer to pages 28, 29) and stop the motor or output an alarm.


### Standard stock

he rough bore TGZ Series is an in-stock item for prompt delivery.

The coupling type is MTO, but the delivery period is short.

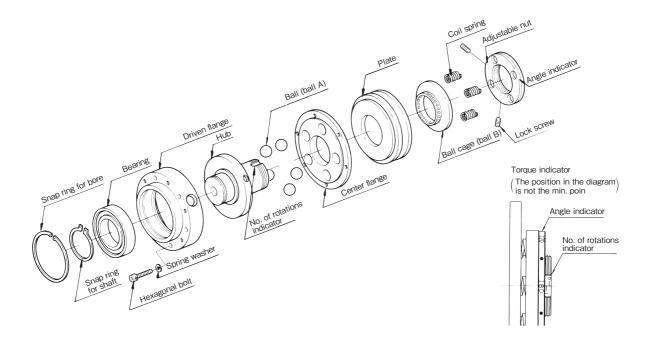
# **Operating Principles**


### During normal operation (when meshing)

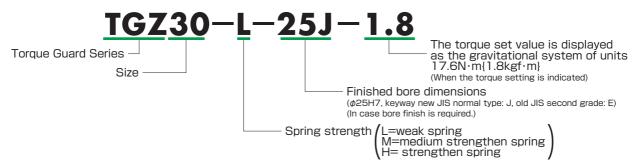


Torque transmission is made by ball A which is pressurized and retained at the hub pocket and the driven flange.

The non-symmetric arrangement of the balls and pockets allows only one engagement position per one rotation, and there is no phase shift after tripping.


### During overload (when tripping)




When overloading (when OFF), ball A instantly pops out of its pocket, and the plate and ball B simultaneously move to the adjusting nut side.

Ball A comes completely out of its pocket and ball B enters the hub outer circumference V-groove, and the pressure from the springs is not transferred to the plate. Therefore, ball A freely rotates without

# Construction



# Model No.



Coupling type

The torque set value is displayed as the gravitational system of units 17.6N·m{1.8kgf·m} (When the torque setting is indicated)

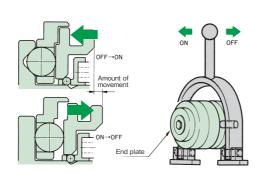
Finished bore dimensions coupling side (\$\phi35H7\$, keyway new JIS normal type: J, old JIS second grade: E) (In case bore finish is required.)

Finished bore dimensions Torque Guard side (\$\phi25H7\$, keyway new JIS normal type: J, old JIS second grade: E) (In case bore finish is required.)

Coupling type

### Applications classified by use

Torque Guard TGZ Series


# 1. Overload protection Torque Guard TGZ Series Motor

Reducer

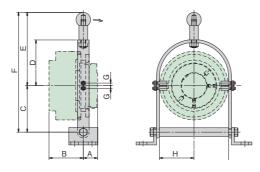
As demonstrated in the diagram on the left, the TGZ Series can be installed with any motor shaft, reducer (variator) or other machines. When considering the layout, make sure to leave sufficient space to adjust torque and for resetting procedures. After removing the cause of overload, do not reset the machine while it is running.

⚠ If the Torque Guard is reset during rotation, the machine will suddenly run.

### 2. ON-OFF clutch



By using manual or mechanical external force (pneumatic, hydraulic, etc.), the plate can be moved, cutting off the input rotation (OFF) or transmitting it (ON). The necessary axial load for turning the machine ON or OFF is written in the table below.


### Necessary shaft direction load when ON-OFF

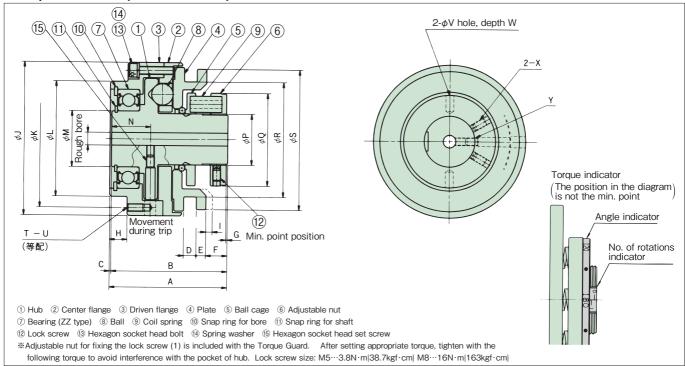
| Actuation<br>Model No. | OFF → ON<br>N {kgf} | ON → OFF<br>N {kgf} | Amount of movement mm |
|------------------------|---------------------|---------------------|-----------------------|
| TGZ20-L                | 49 { 5}             | 245 { 25}           |                       |
| TGZ20-M                | 88 { 9}             | 431 { 44}           | 4.1                   |
| TGZ20-H                | 176 {18}            | 862   88            |                       |
| TGZ30-L                | 98 {10}             | 470 { 48}           |                       |
| TGZ30-M                | 235 {24}            | 1176 {120}          | 4.7                   |
| TGZ30-H                | 470 {48}            | 2352 {240}          |                       |

| Actuation<br>Model No. | OFF → ON<br>N {kgf} | ON → OFF<br>N {kgf} | Amount of movement mm |
|------------------------|---------------------|---------------------|-----------------------|
| TGZ40-L                | 157 { 16}           | 774 { 79}           |                       |
| TGZ40-M                | 421 { 43}           | 2087 (213)          | 5.9                   |
| TGZ40-H                | 833 { 85}           | 4155 424            |                       |
| TGZ50-L                | 451 { 46}           | 2269 {231}          |                       |
| TGZ50-M                | 902 { 92}           | 4518 461            | 7                     |
| TGZ50-H                | 1382 {141}          | 6919 (706)          |                       |

Axial load fluctuates depending on the number of actuations and usage conditions. Set the load with margin.

### 3. ON - OFF handle reference diagram




During rotation the pin touches the TGZ plate, so apply lubrication to the pin's surface.

| N | Nodel no. | Α    | В    | C<br>min. | D<br>min. | E<br>min. | F<br>min. | G   | Н  | Stroke max.<br>deg. | Shaft direction<br>axial force<br>N {kgf} | Pin<br>diameter | Max. pin length |
|---|-----------|------|------|-----------|-----------|-----------|-----------|-----|----|---------------------|-------------------------------------------|-----------------|-----------------|
| 1 | rGZ20     | 23.5 | 50.5 | 60        | 70        | 170       | 230       | 4.5 | 49 | 3.9°                | 225 {23}                                  | φ7              | 13              |
| 1 | rgz30     | 24.5 | 59.0 | 70        | 90        | 210       | 280       | 4.5 | 60 | 3.9°                | 588 (60)                                  | φ7              | 15              |
| 1 | rGZ40     | 32.5 | 68.5 | 90        | 100       | 250       | 340       | 5.0 | 77 | 3.8°                | 1098 {112}                                | φ8              | 16              |
| 1 | rgz50     | 34.2 | 80.3 | 110       | 120       | 300       | 410       | 6.0 | 90 | 3.3°                | 1852 {189}                                | φ 9.5           | 20              |



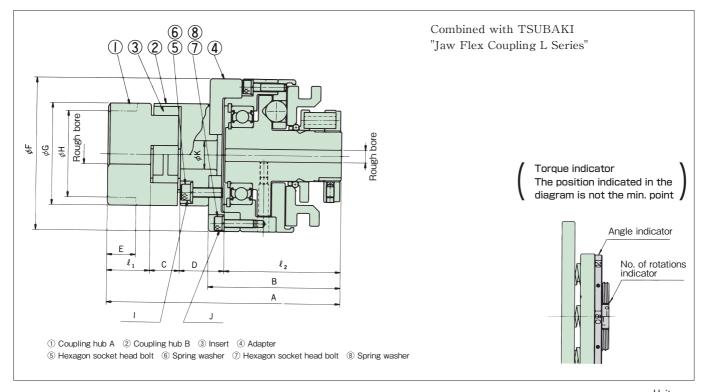
### Transmissible capacity/dimensions

### Torque Guard (TGZ Series)



Unit: mm

| Torque Guard<br>Model No. | Set torque range N·m {kgf·m} | Max. rpm<br>r/min | Coil spri<br>color 2<br>the num | x   | Rough<br>bore<br>diameter | Min.<br>bore<br>diameter | Max.<br>bore<br>diameter | А     | В   | С   | D  | E | F    | G<br>min.<br>point<br>position | Н    | I amount<br>of<br>movement<br>during<br>trip | J   | K<br>PCD |
|---------------------------|------------------------------|-------------------|---------------------------------|-----|---------------------------|--------------------------|--------------------------|-------|-----|-----|----|---|------|--------------------------------|------|----------------------------------------------|-----|----------|
| TGZ20-L                   | 2.4 ~ 8.3  0.24 ~ 0.85       |                   | Yellow X                        | (3  |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ20-M                   | 4.1 ~ 16 {0.42 ~ 1.6}        | 1800              | Blue >                          | (3  | 8                         | 10                       | 20                       | 74    | 73  | 1   | 8  | 6 | 13.5 | 0.8                            | 11   | 4.1                                          | 96  | 86       |
| TGZ20-H                   | 8.2 ~ 31 {0.84 ~ 3.2}        |                   | Blue >                          | (6  |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ30-L                   | 5.9 ~ 21 {0.6 ~ 2.1}         |                   | Yellow X                        | (4  |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ30-M                   | 20 ~ 52 {2.0 ~ 5.3}          | 1800              | Red X                           | (4  | 12                        | 2 14                     | 30                       | 83.5  | 82  | 1.5 | 8  | 6 | 14.5 | 1.1                            | 11.5 | 4.7                                          | 118 | 106      |
| TGZ30-H                   | 39 ~ 108 (4.0 ~ 11)          |                   | Red X                           | 8   |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ40-L                   | 25 ~ 93  2.6 ~ 9.5           |                   | Blue >                          | ( 5 |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ40-M                   | 44 ~ 127 (4.5 ~ 13)          | 1800              | Red X                           | (5  | 1 <i>7</i>                | 19                       | 40                       | 101   | 100 | 1   | 9  | 8 | 20   | 1.1                            | 14   | 5.9                                          | 152 | 139      |
| TGZ40-H                   | 88 ~ 245 (9.0 ~ 25)          |                   | Red X                           | (10 |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ50-L                   | 63 ~ 157 (6.4 ~ 16)          |                   | Red X                           | (5  |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |
| TGZ50-M                   | 127 ~ 304 {13 ~ 31}          | 1800              | Red X                           | (10 | 22                        | 24                       | 50                       | 114.5 | 112 | 2.5 | 10 | 9 | 20.2 | 1.2                            | 16   | 7                                            | 178 | 162      |
| TGZ50-H                   | 245 ~ 451  25 ~ 46           |                   | Green X                         | (10 |                           |                          |                          |       |     |     |    |   |      |                                |      |                                              |     |          |


| Torque Guard<br>Model No. | L<br>h7 | М  | N    | Р  | Q   | R   | S   | Т | U<br>screw diameter<br>X length | ٧ | >  | X<br>screw size<br>X length | Y<br>screw size<br>X length | *<br>Mass<br>kg |       | $%GD^{2}$<br>× 10 $^{-2}$ kgf·m <sup>2</sup> |
|---------------------------|---------|----|------|----|-----|-----|-----|---|---------------------------------|---|----|-----------------------------|-----------------------------|-----------------|-------|----------------------------------------------|
| TGZ20-L                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ20-M                   | 72      | 35 | 24.5 | 32 | 57  | 70  | 88  | 4 | M5×10                           | 5 | 10 | M5×10                       | M5×10                       | 2.57            | 0.273 | 1.09                                         |
| TGZ20-H                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ30-L                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ30-M                   | 87      | 45 | 27.5 | 45 | 75  | 88  | 108 | 4 | M6×12                           | 6 | 10 | M5×10                       | M6×10                       | 4.17            | 0.695 | 2.78                                         |
| TGZ30-H                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ40-L                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ40-M                   | 114     | 65 | 32.5 | 65 | 103 | 119 | 141 | 6 | M6×12                           | 8 | 14 | M8×10                       | M8×10                       | 8.71            | 2.40  | 9.60                                         |
| TGZ40-H                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ50-L                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |
| TGZ50-M                   | 133     | 75 | 37   | 75 | 113 | 138 | 166 | 6 | M8×16                           | 9 | 14 | M8×10                       | M8×10                       | 13.7            | 5.30  | 21.2                                         |
| TGZ50-H                   |         |    |      |    |     |     |     |   |                                 |   |    |                             |                             |                 |       |                                              |

 $\ensuremath{\mbox{\%}}\mbox{Mass, inertia moment and $GD^2$ are based on the bores' maximum diameters.}$ 

Note: All rough bore products are stock items.

# Torque Guard

### **Torque Guard Coupling**



|   |              |                         |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            | l    | Jnit : mm    |
|---|--------------|-------------------------|----------|---------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|-----|-------|------|------|------------|------------|------|--------------|
|   | Torque Guard | Set torque range        | Max. rpm | Torc                      | que Gu                   | uard                     | С                         | ouplir                   | ng                       |     | В     | 6    | ,    |            | 4          | _    | _            |
|   | Model No.    | N·m {kgf·m}             | r/min    | Rough<br>bore<br>diameter | Min.<br>bore<br>diameter | Max.<br>bore<br>diameter | Rough<br>bore<br>diameter | Min.<br>bore<br>diameter | Max.<br>bore<br>diameter | Α   | ь     | С    | D    | <b>l</b> 1 | <b>l</b> 2 | E    | F            |
|   | TGZ20-LC     | 2.4 ~ 8.3 (0.24 ~ 0.85) |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
| ĺ | TGZ20-MC     | 4.1 ~ 16                | 1800     | 8                         | 10                       | 20                       | 12.7                      | 16                       | 35                       | 146 | 83    | 18.8 | 27.2 | 27         | 73         | _    | 96           |
|   | TGZ20-HC     | 8.2 ~ 31   (0.84 ~ 3.2) |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
|   | TGZ30-LC     | 5.9 ~ 21 {0.6 ~ 2.1}    |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
|   | TGZ30-MC     | 20 ~ 52 {2.0 ~ 5.3}     | 1800     | 12                        | 14                       | 30                       | 18.0                      | 21                       | 47                       | 180 | 93.5  | 22.6 | 32.5 | 42.9       | 82         | _    | 118          |
|   | TGZ30-HC     | 39 ~ 108 (4.0 ~ 11)     |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
|   | TGZ40-LC     | 25 ~ 93 {2.6 ~ 9.5}     |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
|   | TGZ40-MC     | 44 ~ 127 (4.5 ~ 13)     | 1800     | 17                        | 19                       | 40                       | 19.1                      | 22                       | 58                       | 213 | 111   | 26.1 | 32.9 | 54         | 100        | 34.9 | 152          |
|   | TGZ40-HC     | 88 ~ 245 (9.0 ~ 25)     |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
| ĺ | TGZ50-LC     | 63 ~ 157 (6.4 ~ 16)     |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |
| ĺ | TGZ50-MC     | 127 ~ 304 {13 ~ 31}     | 1800     | 22                        | 24                       | 50                       | 19.1                      | 22                       | 63                       | 242 | 127.5 | 26.1 | 40.4 | 63.5       | 112        | 34.9 | 1 <i>7</i> 8 |
| ĺ | TGZ50-HC     | 245 ~ 451  25 ~ 46      |          |                           |                          |                          |                           |                          |                          |     |       |      |      |            |            |      |              |

| Torque Guard<br>Model No. | G     | Н     | No. of pieces-<br>screw size X<br>length | J<br>No. of pieces-<br>screw size X<br>length | *<br>Mass<br>kg |      | _    | Model No.<br>of coupling<br>used | К  | Allowable<br>angular<br>misalignment<br>(deg.) | Allowable<br>parallel<br>misalignment | Allowable<br>shaft direction<br>displacement |
|---------------------------|-------|-------|------------------------------------------|-----------------------------------------------|-----------------|------|------|----------------------------------|----|------------------------------------------------|---------------------------------------|----------------------------------------------|
| TGZ20-LC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ20-MC                  | 64.3  | _     | 3-M6×20                                  | 4-M5×22                                       | 4.34            | 0.44 | 1.76 | L099-H                           | 27 | 0.5                                            | 0.38                                  | ±0.5                                         |
| TGZ20-HC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ30-LC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ30-MC                  | 84.1  | _     | 6-M6×22                                  | 4-M6×22                                       | 7.77            | 1.22 | 4.86 | L110-H                           | 40 | 0.5                                            | 0.38                                  | ± 0.7                                        |
| TGZ30-HC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ40-LC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ40-MC                  | 114.3 | 101.6 | 6-M6×25                                  | 6-M6×25                                       | 15.4            | 4.05 | 16.2 | L190-H                           | 54 | 0.5                                            | 0.38                                  | ± 1.0                                        |
| TGZ40-HC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ50-LC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |
| TGZ50-MC                  | 127   | 107.9 | 6-M8×25                                  | 6-M8×25                                       | 23.2            | 8.63 | 34.5 | L225-H                           | 60 | 0.5                                            | 0.38                                  | ± 1.0                                        |
| TGZ50-HC                  |       |       |                                          |                                               |                 |      |      |                                  |    |                                                |                                       |                                              |

 $\ensuremath{\text{\%}\text{Mass}}$  , inertia moment and GD² are based on the bores' maximum diameters.

Note: All products are MTO.

### Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

### 1. Setting trip torque

 $T_{\text{\tiny P}} = T_{\text{\tiny L}} \times S.F = \frac{60000 \times P}{2\pi \cdot n} \times S.F \left| T_{\text{\tiny P}} = \frac{974 \times P}{n} \times S.F \right|$  $T_P$  = Trip torque  $N \cdot m \{ kgf \cdot m \}$   $T_L = Load torque N \cdot m \{ kgf \cdot m \}$ P = Transmittance power kW S.F = Service factor n = rpm r/min

- (1) From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1

| the serv       | the service factor in Table 1.                               |  |  |  |  |  |  |  |  |  |
|----------------|--------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Table          |                                                              |  |  |  |  |  |  |  |  |  |
| Service factor | Operating conditions                                         |  |  |  |  |  |  |  |  |  |
| 1.25           | In the case of normal start up/stop, intermittent operation  |  |  |  |  |  |  |  |  |  |
| 1.50           | In the case of a heavy shock load or forward-reverse driving |  |  |  |  |  |  |  |  |  |

### 2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_L + I_t}{I_S} \qquad \left\{ K = \frac{GD_L^2 + GD_t^2}{GD_s^2} \right\} \qquad T_{\uparrow} = \frac{K \cdot T_S + T_L}{1 + K} \qquad T_p = SF \cdot T_{\downarrow}$$

K : Inertia ratio

 $I_s$ : Drive side inertia moment  $(kg \cdot m^2)$ 

### Handling

### 1. Bore finishing (Torque Guard)

### (1) Before finishing

The Torque Guard TGZ Series is shipped set at the minimum point (minimum torque value). Once received, confirm that the revolution indicator and angle indicator are set at zero.

### (2) Disassembly

Loosen the setscrews, remove the adjusting nut and take out the coil springs, ball cage, plate and balls. Next, take out the shaft snap ring, and remove the bearing and driven flange. When disassembling, take care not to lose the ball B at s ball cage. Make sure the Torque Guard parts do not become dusty or dirty.

### (3) Chucking

Chuck the hub flange's outside diameter and center the hub portion.

### (4) Keyway

### ① Keyway specifications

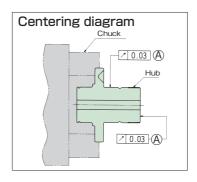

Table 1 shows the maximum bore diameters for keyway specifications.

Table 1

| Model No. | Max. shaft diameter | Applicable standard |
|-----------|---------------------|---------------------|
| TGZ20     | $\phi 20$           | parallel key        |
| TGZ30     | $\phi 30$           |                     |
| TGZ40     | $\phi 40$           | New JIS             |
| TGZ50     | φ 50                | Old JIS             |

### 2 Centering

Chuck the hub flange's outer edge and center the hub as shown in the figure on the right.



 $\{GD_s^2 : Drive \ side \ GD^2 \ (kgf \cdot m^2)\}$ 

 $I_L$ : Load side inertia moment  $(kg \cdot m^2)$ 

 $\{GD_L^2 : load side GD^2 (kgf \cdot m^2)\}$ 

It : Torque Guard inertia moment (kg·m²)

 $\{GD_t^2 : Torque Guard GD^2 (kgf \cdot m^2)\}$ 

T<sub>s</sub>: Motor starting torque (N·m) {kgf·m<sup>2</sup>}

T<sub>t</sub>: Torque in Torque Guard during start up (N·m) {kgf·m}

 $T_L$ : Load torque  $(N \cdot m) \{ kgf \cdot m \}$ 

 $T_P$ : Trip torque  $(N \cdot m) \{ kgf \cdot m \}$ 

S.F.: Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD<sup>2</sup> and torque value.

### 3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

### 4. Choosing the model number

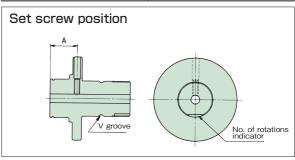
Choose a model where the calculated trip torque is within the minimum to maximum setting range.

### 5. Verifying bore diameter

Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

### 6. Confirming rpm


Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.

### ③ Machining

The keyway should be machined directly below the setscrew tap at the hub flange section as shown below.

Table 2

| Model No. | A    |
|-----------|------|
| TGZ20     | 24.5 |
| TGZ30     | 27.5 |
| TGZ40     | 32.5 |
| TGZ50     | 37.0 |



### (5) Reassembly

After bore finishing is completed and you are reassembling the Torque Guard, make sure to coat the pockets of the ball As and ball Bs, and the V-groove with grease.

### 2. Bore finishing (Torque Guard Coupling)

### (1) Reassembly

① Keyway specifications

Table 3 shows the maximum bore diameters on the coupling side. For the maximum bore diameters of the Torque Guard hub, refer to Table 1.

② Centering

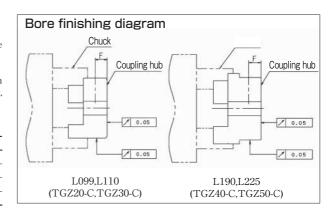
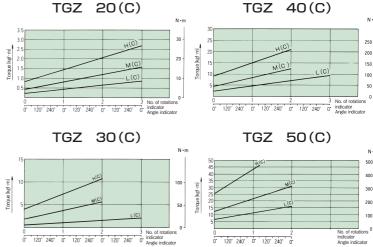

Chuck the coupling hub's outer edge and center the hub as shown in Figure 5. For the recommended positions of the coupling hub setscrew, refer to Table 4 (Length F).

Table 3

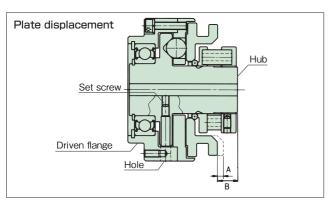
| Max. shaft diameter | Applicable standard  |
|---------------------|----------------------|
| φ 35                | Parallel key         |
| $\phi 47$           |                      |
| φ 58                | New JIS              |
| φ 63                | Old JIS              |
|                     | φ 35<br>φ 47<br>φ 58 |

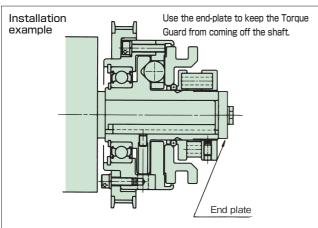
Table 4


| abic <del>-</del> |                    |          |
|-------------------|--------------------|----------|
| Model No.         | Coupling model No. | Length F |
| TGZ20-C           | L099-H             | 13.5     |
| TGZ30-C           | L110-H             | 20.5     |
| TGZ40-C           | L190-H             | 25.5     |
| TGZ50-C           | L225-H             | 25.5     |



### 3. Trip Torque setting


- (1) Torque Guard TGZs are all shipped with torque set at the minimum point (min. torque value). Confirm that the angle indicator and the revolution indicator are set at zero. The revolution indicator can be read at the end face of the adjusting nut. Refer to page 52 for more information.
- (2) From the "Tightening Amount Torque Correlation Chart" (below), find the adjusting nut tightening angle equivalent to the predetermined trip torque. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque.
- (3) After setting torque, screw the lock screw to the adjusting nut. Refer to page 27 for lock screw tightening torque and points of caution.
- (4) Do not turn the adjusting nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend.


\*\*Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use these values only as a rough guide.



### Resetting

Match up one hole of the driven flange with the hub side's setscrew position. (This position is the pocket and ball's correct phase.) Next, apply axial load to the plate to reset (refer to the right chart.). To determine whether the Torque Guard has completely reset, verify it using the measurements of the diagram below (displacement A).

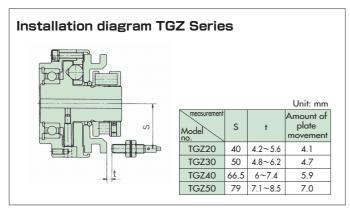


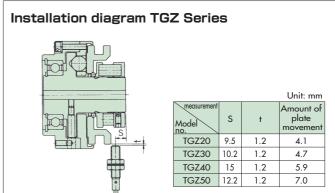


| Model No. | Axial load<br>N (kgf) | Amount of displacement A mm | B<br>mm |  |  |
|-----------|-----------------------|-----------------------------|---------|--|--|
| TGZ20-L   | 49 (5)                |                             |         |  |  |
| TGZ20-M   | 88 (9)                | 4.1                         | 13.5    |  |  |
| TGZ20-H   | 176 {18}              |                             |         |  |  |
| TGZ30-L   | 98 {10}               |                             |         |  |  |
| TGZ30-M   | 235 {24}              | 4.7                         | 14.5    |  |  |
| TGZ30-H   | 470 (48)              |                             |         |  |  |
| TGZ40-L   | 157 {16}              |                             |         |  |  |
| TGZ40-M   | 421 (43)              | 5.9                         | 20.0    |  |  |
| TGZ40-H   | 833 {85}              |                             |         |  |  |
| TGZ50-L   | 451 (46)              |                             |         |  |  |
| TGZ50-M   | 902 (92)              | 7.0                         | 18.2    |  |  |
| TGZ50-H   | 1382{141}             |                             |         |  |  |

### Maintenance

Grease the ball and ball cage either once per year or every thousand trips.

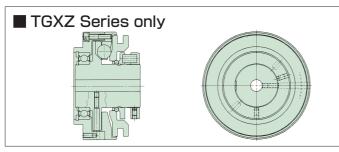

### Grease

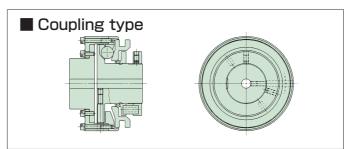

| Exxon Mobil    | Showa Shell            | Idemitsu                        | JX Nippon Oil & Energy     | Kygnus                          |
|----------------|------------------------|---------------------------------|----------------------------|---------------------------------|
| Mobilux<br>EP2 | Alvania<br>EP Grease 2 | Daphny<br>Eponex<br>Grease EP 2 | Epinoc<br>Grease<br>AP(N)2 | Cosmo<br>Dynamax EP<br>Grease 2 |

### Overload detection

### TG sensor installation

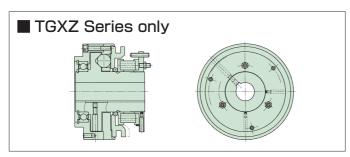
- The detecting distance of a TG Sensor is 1.5mm. Set the Torque Guard in a non-trip condition with the dimensions (s, t) in the chart below.
- Install the TG Sensor with the Torque Guard at the tripped position. Then, while rotating the Torque Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Torque Guard.

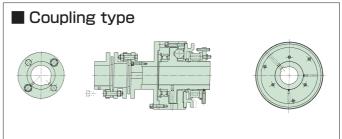



# **Special Specifications**

# **TGXZ Series**


Non-backlash and complete release type. With its high-speed specifications (up to 1800r/min), it is ideal for when instant stop isn't possible. Please contact TEM for more information.






# TGZ Large Series

For the application of setting torque 451N · m {46kgf · m} and above, please contact TEM for more information.





### Applicable sprocket for TGZ Series

| , ibbiloabio obi c          |      |      |      | -          |            |            |            |       |            |
|-----------------------------|------|------|------|------------|------------|------------|------------|-------|------------|
| Sprocket Model No. TGZ size | RS25 | RS35 | RS41 | RS40       | RS50       | RS60       | RS80       | RS100 | RS120      |
| TGZ20L, M, H                | (51) | (35) | (28) | 30<br>(29) | 24<br>(23) | 20         | 16         | 13    | 13<br>(12) |
| TGZ30L, M, H                | (62) | (43) | (33) | 35<br>(33) | 30<br>(27) | 24<br>(23) | 18         | 16    | 14         |
| TGZ40L, M, H                |      | (54) | (41) | 45<br>(41) | 35<br>(34) | 30<br>(24) | 24<br>(23) | 19    | 16         |
| TGZ50L, M, H                |      | 62   | (48) | 48         | 40<br>(39) | 35<br>(33) | 26         | 21    | 18         |

<sup>\*</sup> The number of teeth in parentheses is not the amount for a standard Type A sprocket. Whenever possible, use a sprocket with more teeth than this.

# **Torque Limiter**

# **Features**

Traditional friction type
Economically priced and easy to use

### Easy torque adjustment

Slip torque setting and adjusting can be done by simply tightening the adjusting nut or bolts. The friction of the friction facings and the center member transmits torque, so overload is guaranteed to cause the Torque Limiter to slip, thus protecting the machine.

### **Automatic reset**

If overload occurs the Torque Limiter will slip. If overload is removed it will automatically reset and begin to rotate. Because there are no parts to replace like a shear pin, the Torque Limiter requires little labor to keep it operating.

### Can be fixed to each type of drive

Sprockets and gears can be fixed to the center member.

### A wide variety of Torque Limiters are available

From small capacity to large, all standard models can be used in all transmission conditions.

### Finished bores for quick delivery

Finished bore products can be made for quick delivery. (Refer to pages 61, 63)

# Series

### **Torque Limiter**

Once attached to the shaft, torque transmission is conveyed through roller chains, belts and gears.

Torque Limiter with sprocket

The torque of finished bore Torque Limiters with machined sprockets is factory pre-set.

Torque Limiter coupling

A combined Torque Limiter and roller chain coupling.

### Torque Limiter with sprocket



TL500

TL200~TL700

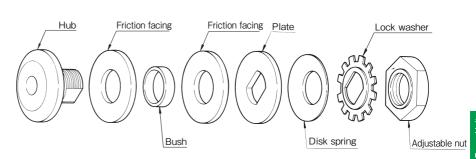
Torque Limiter (rough bore)



TL10

TL200~TL20

Torque Limiter coupling (rough bore)




TL500-C

TL200-C~TL20-C

# Construction and operating principles





- During normal operation, the disk spring inserted between the center member and friction facings applies pressure to the center member. Below the set torque, the frictional force transmits rotation.
- If the operational torque exceeds the set torque due to overload, the center member will slip between the friction facings. When overload is stopped, it automatically resets.

# Model No.

1.Torque Limiter

TL350-1-B6.5-20J

Size

No. of disk springs

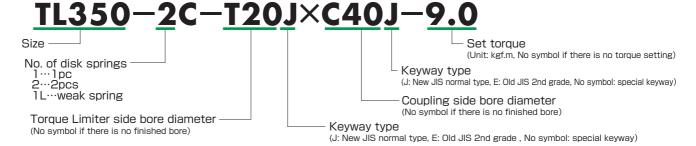
1...1pc

2...2pcs

1L...weak spring

Bush length(No symbol if there is no bush)

Keyway type

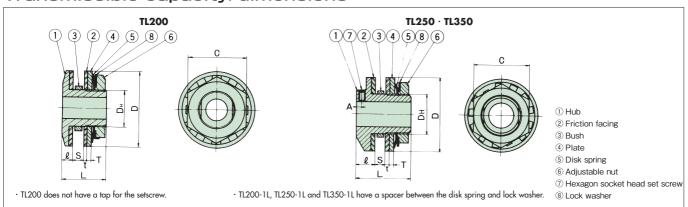

(J: New JIS normal type, E: Old JIS 2nd grade,No symbol: special keyway)

Shaft diameter

(No symbol if shaft bore is not finished)

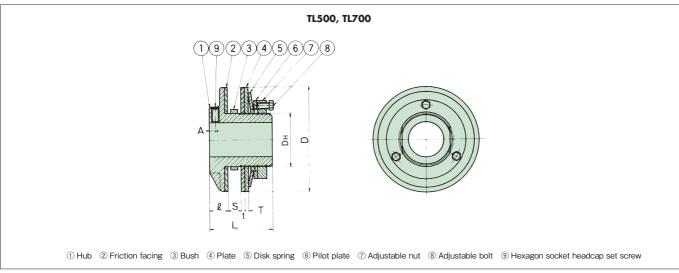
Bush length(No symbol if there is no bush)

2. Torque Limiter coupling



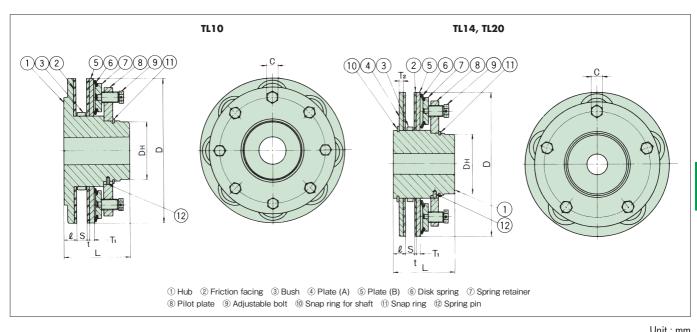

# When using the Torque Limiter

Before installing a Torque Limiter rough bore product to the shaft, it is necessary to finish the bore, keyway and center member as well as torque setting.


- · Refer to page 64 for more information on Torque Limiter selection and center member selection/machining.
- · Before assembling the Torque Limiter, remove any oil, rust or dust from the hub, friction facings, plate or center member (sprockets and gear).
- · Refer to page 64 for more information on setting torque.

### Transmissible capacity/dimensions




|           |                         |         |                  |                  |                  |        |            |               |            |    |       |      |     |                |    |   |    |                  | Uni       | it : mm |   |                                    |           |    |
|-----------|-------------------------|---------|------------------|------------------|------------------|--------|------------|---------------|------------|----|-------|------|-----|----------------|----|---|----|------------------|-----------|---------|---|------------------------------------|-----------|----|
|           | Set torque range        | Max.rpm | Rough            | Min.             | Мах.             | Bush   | Bush outer | Center member | Dimensions |    |       |      |     |                |    |   |    |                  |           | Mass    |   |                                    |           |    |
| Model No. | N·m {kgf·m}             | (r/min) | bore<br>diameter | bore<br>diameter | bore<br>diameter | length | In It is   |               | Como mome  |    | 1 1 1 |      | D   | D <sub>H</sub> | L  | l | T  | t                | S<br>max. | Α       | С | Adjustable nut<br>diameter X pitch | Set screw | Lσ |
| TL200-IL  | 1.0 ~ 2.0   (0.1 ~ 0.2) |         |                  |                  |                  | 3.8    |            |               |            |    |       |      |     |                |    |   |    |                  |           |         |   |                                    |           |    |
| TL200-1   | 2.9 ~ 9.8   0.3 ~ 1.0   |         | 7                | 10               | 14               | 6.0    | 30 - 0.024 | 30 + 0.03     | 50         | 24 | 29    | 6.5  | 2.6 | 2.5            | 7  | _ | 38 | $M24 \times 1.0$ | _         | 0.2     |   |                                    |           |    |
| TL200-2   | 6.9 ~ 20    0.7 ~ 2.0   |         |                  |                  |                  | 0.0    |            |               |            |    |       |      |     |                |    |   |    |                  |           |         |   |                                    |           |    |
| TL250-IL  | 2.9 ~ 6.9   0.3 ~ 0.7   |         |                  |                  |                  | 4.5    |            |               |            |    |       |      |     |                |    |   |    |                  |           |         |   |                                    |           |    |
| TL250-1   | 6.9 ~ 27                | 1,800   | 10               | 12               | 22               | 6.5    | 41 - 0.010 | 41 + 0.05     | 65         | 35 | 5 48  | 8 16 | 4.5 | 3.2            | 9  | 4 | 50 | M35×1.5          | M5        | 0.6     |   |                                    |           |    |
| TL250-2   | 14 ~ 54 {1.4 ~ 5.5}     |         |                  |                  |                  | 0.5    |            |               |            |    |       |      |     |                |    |   |    |                  |           |         |   |                                    |           |    |
| TL350-IL  | 9.8 ~ 20 {1.0 ~ 2.0}    |         |                  |                  |                  | 4.5    |            |               |            |    |       |      |     |                |    |   |    |                  |           |         |   |                                    |           |    |
| TL350-1   | 20 ~ 74    2.0 ~ 7.6    |         | 17               | 18               | 25               | 6.5    | 49 - 0.025 | 49 0.05       | 89         | 42 | 62    | 19   | 4.5 | 3.2            | 16 | 6 | 63 | M42×1.5          | M6        | 1.2     |   |                                    |           |    |
| TL350-2   | 34 ~ 149  3.5 ~ 15.2    |         |                  |                  |                  | 9.5    |            |               |            |    |       |      |     |                |    |   |    |                  |           |         |   |                                    |           |    |

- Note: 1. The products in bold are stock items. The rest are MTO.
  - 2. The hexagon socket head set screw is included.
  - 3. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.
  - 4. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.
  - 5. For the selection of bush length, refer to the Selection page.



|           |                        |         |                  |                  |                  |        |                                        |               |     |                |    |    |   |     |          |      |                                    |          | Uni       | it : mm |
|-----------|------------------------|---------|------------------|------------------|------------------|--------|----------------------------------------|---------------|-----|----------------|----|----|---|-----|----------|------|------------------------------------|----------|-----------|---------|
|           | Set torque range       | Max.rpm | Rough            | Min.             | Мах.             | Bush   | Bush                                   | Center member |     |                |    |    |   |     | Di       | mens | ions                               |          |           | Mass    |
| Model No. | N·m {kgf·m}            | (r/min) | bore<br>diameter | bore<br>diameter | bore<br>diameter | length | outer<br>diameter                      | hara diameter |     | D <sub>H</sub> | L  | l  | Т | t   | S<br>Max | Α    | Adjustable nut<br>diameter X pitch |          | Set screw |         |
| TL500-1L  | 20 ~ 49 { 2.0 ~ 5.0}   |         |                  |                  |                  |        |                                        |               |     |                |    |    |   |     |          |      |                                    |          |           |         |
| TL500-1   | 47 ~ 210   4.8 ~ 21.4  |         | 20               | 22               | 42               | 6.5    | 74-0.05                                | 74 0.05       | 127 | 65             | 76 | 22 | 6 | 3.2 | 16       | 7    | M65×1.5                            | M8×1     | M 8       | 3.5     |
| TL500-2   | 88 ~ 420   9.0 ~ 42.9  | 1.800   |                  |                  |                  | 9.5    |                                        |               |     |                |    |    |   |     |          |      |                                    |          |           |         |
| TL700-1L  | 49 ~ 118 { 5.0 ~ 12 }  | 1,800   |                  |                  |                  | 0.5    |                                        |               |     |                |    |    |   |     |          |      |                                    |          |           |         |
| TL700-1   | 116 ~ 569  11.8 ~ 58.1 |         | 30               | 32               | 64               |        | 9.5<br>105 <sup>-0.075</sup><br>-0.125 | 105+ 0.05     | 178 | 95             | 98 | 24 | 8 | 3.2 | 29       | 8    | M95×1.5                            | M10×1.25 | M10       | 8.4     |
| TL700-2   | 223 ~ 1080  22.8 ~ 111 |         |                  |                  |                  | 12.5   |                                        |               |     |                |    |    |   |     |          |      |                                    |          |           |         |

- Note: 1. The products in bold are stock items. The rest are MTO.
  - 2. The hexagon socket head set screw is included.
  - 3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.
  - 4. For the selection of bush length, refer to the Selection page.



|           | Set torque range        | May rpm | Rough | Min.             | Max.              | Bush           | Bush outer  | Center member         |     |                |     |     |                | Dime           | nsions | 5         |    | Ĭ                                  | Mass    |
|-----------|-------------------------|---------|-------|------------------|-------------------|----------------|-------------|-----------------------|-----|----------------|-----|-----|----------------|----------------|--------|-----------|----|------------------------------------|---------|
| Model No. | N·m  kgf·m              | (r/min) | bore  | bore<br>diameter | bore<br>rdiameter | length         | diameter    | In 1 1                | D   | D <sub>H</sub> | L   | l   | T <sub>1</sub> | T <sub>2</sub> | t      | S<br>max. | С  | Adjustable nut<br>diameter X pitch | kø      |
| TL10 - 16 | 392 ~ 1247   40 ~ 130   | 1.000   | 30    | 32               | 72                | 12.5<br>15.5   | 135-0.085   | 135+0.07              | 254 | 100            | 115 | 23  | 8.5            | _              | 4.0    | 24        | 19 | M18×1.5                            | 21      |
| TL10 - 24 | 588 ~ 1860   60 ~ 190   |         | 30    | 32               | /2                | 19.5           | 133 - 0.125 | 155 0                 | 254 | 100            | 113 | 23  | 0.0            |                | 4.0    | 24        | 17 | M10 × 1.3                          | <u></u> |
| TL14 - 10 | 882 ~ 2666   90 ~ 272   |         | 40    | 42               | 100               | 15.5<br>19.5   | 183-0.07    | 183 <sup>+ 0.07</sup> | 356 | 145            | 150 | 31  | 13             | 13             | 4.0    | 29        | 27 | M26×1.5                            | 52      |
| TL14 - 15 | 1960 ~ 3920 (200 ~ 400) | 500     | 40    | 42               | 100               | 23.5           | 103 - 0.12  | 163 0                 | 336 | 145            | 130 | 31  | 13             | 13             | 4.0    | 29        | 2/ | M20 × 1.5                          | 52      |
| TL20 - 6  | 2450 ~ 4900 (250 ~ 500) |         |       |                  | 100               | 15.5           | 004 = 0.07  | 004+007               | 500 | 105            | 175 | 2.4 | 1.5            | 10             | 4.0    | 0.1       | ٠, |                                    | 117     |
| TL20 - 12 | 4606 ~ 9310 (470 ~ 950) |         | 50    | 52               | 130               | 19.5 2<br>23.5 | 226-0.12    | 226 + 0.07            | 508 | 185            | 175 | 36  | 15             | 18             | 4.0    | 31        | 36 | M32×1.5                            | 117     |

Note: 1. All products are MTO.

- 2. If the model larger than TL20-12 is required, contact TEM.
- 3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.
- 4. For the selection of bush length, refer to the Selection page.

With bush

### TL200-350

| Without bush |           |  |  |  |  |  |  |  |  |  |
|--------------|-----------|--|--|--|--|--|--|--|--|--|
| Product code | Model No. |  |  |  |  |  |  |  |  |  |
| S110701      | TL200-1L  |  |  |  |  |  |  |  |  |  |
| \$110001     | TL200-1   |  |  |  |  |  |  |  |  |  |
| \$110011     | TL200-2   |  |  |  |  |  |  |  |  |  |
| \$110702     | TL250-1L  |  |  |  |  |  |  |  |  |  |
| S110002      | TL250-1   |  |  |  |  |  |  |  |  |  |
| S110012      | TL250-2   |  |  |  |  |  |  |  |  |  |
| \$110703     | TL350-1L  |  |  |  |  |  |  |  |  |  |
| S110003      | TL350-1   |  |  |  |  |  |  |  |  |  |
| \$110013     | TL350-2   |  |  |  |  |  |  |  |  |  |

| Product code | Model No.     |
|--------------|---------------|
| S110711      | TL200-1L-B3.8 |
| S110721      | TL200-1L-B6.0 |
| S110101      | TL200-1-B3.8  |
| S110102      | TL200-1-B6.0  |
| S110103      | TL200-2-B3.8  |
| S110104      | TL200-2-B6.0  |
| S110712      | TL250-1L-B4.5 |
| S110722      | TL250-1L-B6.5 |
| S110105      | TL250-1-B4.5  |
| S110106      | TL250-1-B6.5  |
| S110107      | TL250-2-B4.5  |
| S110108      | TL250-2-B6.5  |
| S110713      | TL350-1L-B4.5 |
| S110723      | TL350-1L-B6.5 |
| S110724      | TL350-1L-B9.5 |
| S110109      | TL350-1-B4.5  |
| \$110110     | TL350-1-B6.5  |
| \$110111     | TL350-1-B9.5  |
| \$110112     | TL350-2-B4.5  |
| \$110113     | TL350-2-B6.5  |
| S110114      | TL350-2-B9.5  |

| I | L5    | UU   | -/ | υu  |
|---|-------|------|----|-----|
| ۸ | /ith/ | n it | hi | ıeh |

| Product code | Model No. |   | Pro        |
|--------------|-----------|---|------------|
| S110704      | TL500-1L  |   | <b>S</b> 1 |
| S110004      | TL500-1   |   | S1         |
| S110014      | TL500-2   |   | S1         |
| S110705      | TL700-1L  |   | S1         |
| S110005      | TL700-1   |   | S1         |
| S110015      | TL700-2   | _ | S1         |
|              |           |   | S1         |
|              |           |   | S1         |
|              |           | - | S1         |
|              |           | - | <b>S</b> 1 |
|              |           |   | S1         |
|              |           | - | C 1        |

With bush
Product code Model No.

| S110714 | TL500-1L-B6.5  |
|---------|----------------|
| S110725 | TL500-1L-B9.5  |
| S110115 | TL500-1-B6.5   |
| S110116 | TL500-1-B9.5   |
| S110117 | TL500-2-B6.5   |
| S110118 | TL500-2-B9.5   |
| S110715 | TL700-1L-B9.5  |
| S110726 | TL700-1L-B12.5 |
| S110119 | TL700-1-B9.5   |
| S110120 | TL700-1-B12.5  |
| S110121 | TL700-2-B9.5   |
| S110122 | TL700-2-B12.5  |

TL10-20

| Without bush |           |  |  |  |  |  |  |
|--------------|-----------|--|--|--|--|--|--|
| Product code | Model No. |  |  |  |  |  |  |
| S110006      | TL10-16   |  |  |  |  |  |  |
| S110016      | TL10-24   |  |  |  |  |  |  |
| S110017      | TL14-10   |  |  |  |  |  |  |
| \$110018     | TL14-15   |  |  |  |  |  |  |
| \$110019     | TL20-6    |  |  |  |  |  |  |
| S110020      | TL20-12   |  |  |  |  |  |  |

| With | bush |
|------|------|

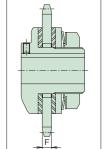
| Product code | Model No.     |
|--------------|---------------|
| S110123      | TL10-16-B12.5 |
| \$110124     | TL10-16-B15.5 |
| S110125      | TL10-16-B19.5 |
| \$110126     | TL10-24-B12.5 |
| S110127      | TL10-24-B15.5 |
| S110128      | TL10-24-B19.5 |
| \$110129     | TL14-10-B15.5 |
| S110130      | TL14-10-B19.5 |
| \$110131     | TL14-10-B23.5 |
| \$110132     | TL14-15-B15.5 |
| S110133      | TL14-15-B19.5 |
| S110134      | TL14-15-B23.5 |
| \$110135     | TL20-6-B15.5  |
| S110136      | TL20-6-B19.5  |
| S110137      | TL20-6-B23.5  |
| \$110138     | TL20-12-B15.5 |
| S110139      | TL20-12-B19.5 |
| S110140      | TL20-12-B23.5 |
|              |               |

### Finished bore Torque Limiter with sprockets



■ Finished bore Torque Limiter and finished sprockets are available for quick delivery. If sold as a combination, torque is pre-set before shipment.

### With sprocket


Sprocket comes standard with TL200 to TL700.

### Bores and keyways are already finished

Bore finishing is standard for Torque Limiter TL200C to 700C.

### Easy torque setting

Because the adjustable nut or adjustable bolt is set at the predetermined 120°, it is easy for the customer to set torque. (Subject models for torque pre-setting)



### Sprocket and bore finishing dimension table

| Torque               | Finishe               | ed bore     | Sprockets |             |                     |                                  |                                     |      |  |
|----------------------|-----------------------|-------------|-----------|-------------|---------------------|----------------------------------|-------------------------------------|------|--|
| Limiter<br>Model No. | diamet                | er(mm)      | Туре      | F(mm)       | Bush length<br>(mm) | No. of teeth                     | No. of teeth                        | (kg) |  |
| TL200                | 11,12,14,             | 10          | RS35      | 4.3 - 0.25  | 3.8                 | 20,21,22,23,24,25,26,27,28,30    | _                                   | 0.3  |  |
| 11200                | 11,12,14,             | 10          | RS40      | 7 - 0.35    | 6.0                 | 16,17,18,19,20,21,22,23,24,25,26 | _                                   | 0.33 |  |
| TL250                | 12,14,15,16,          | 17          | RS40      | 7 - 0.35    | 6.5                 | 22,23,24,25,26,27,28,30          | 21,32                               | 0.85 |  |
| 11250                | 18,19,20,22           | 17          | RS50      | 7 - 0.25    | 6.5                 | 18,19,20,21,22,23,24,25,26,27,28 | 17                                  | 0.92 |  |
|                      |                       |             | RS40      | 7 - 0.35    | 6.5                 | 26,27,28,30,32,34,35,36,38       | 40,42,45                            | 1.55 |  |
| TL350                | 18,19,20,<br>22,24,25 | =           | RS50      | 7 - 0.25    | 6.5                 | 22,23,24,25,26,27,28,30,32       | 21,34,35,36                         | 1.68 |  |
|                      |                       |             | RS60      | 10 - 0.30   | 9.5                 | -                                | 18,19,20,21,22,23,24,25,26,27,28,30 | 1.91 |  |
|                      | 22,24,25,             |             | RS50      | 7 - 0.25    | 6.5                 | 30,32,34,35,36,38,40,42,45       | 48,50                               | 4.3  |  |
| TL500                | 28,30,<br>32,35,38,   | 29,33,36    | RS60      | 10 - 0.30   | 9.5                 | 25,26,27,28,30,32,34,35,36,38    | 40                                  | 4.7  |  |
|                      | 40,42                 |             | RS80      | 13 - 0.30   | 9.5                 | =                                | 19,20,21,22,23,24,25,26,27,28,30    | 5.2  |  |
|                      | 35,40,42,45,          | 32,33,36,   | RS60      | 10 - 0.30   | 9.5                 | 35,36,38,40,42,45,48,50,54       | -                                   | 10.7 |  |
| TL700                | 50,55,60,             | 38,43,46,   | RS80      | 13 - 0.30   | 12.5                | 26,27,28,30,32,34,35,36,38       | -                                   | 11.2 |  |
|                      | 63,64                 | 48,52,56,57 | RS100     | 16.5 - 0.30 | 12.5                | -                                | 21,22,23,24,25,26,27,28,30          | 12.2 |  |
| Delivery             | <b>%</b> 1            | <b>%</b> 1  |           |             |                     | <b>%</b> 1                       | *2                                  | _    |  |

%1 = Ex.-Japan 4weeks by sea %2 = Ex.-Japan 6weeks by sea

- \*\*2 = 1.X.-japan 6 weeks by sea

  1. Delivery dates are listed in each column. If ordering the finished bore and with sprocket combination, the longer time of delivery applies.

  2. If a finished bore is a size other than that listed in the chart above or hardened teeth are needed, it may be possible to provide this. Contact TEM for a consultation.

  3. The thickness of sprocket F is different from the thickness of the standard sprocket.

  4. For Torque Limiter dimensions, refer to pages 59 and 60.

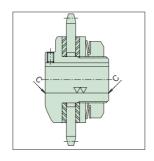
- 5. The mass of the above is based on rough bore and minimum number of sprocket teeth.
  6. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.

### Model No.



· Torque setting is done at 120° on the "Tightening Amount - Torque Correlation Graph". When using the Torque Limiter, set the torque based on 120° with the adjusting nuts or bolts.

### Bore and keyway specifications


· The bore tolerance is H7.

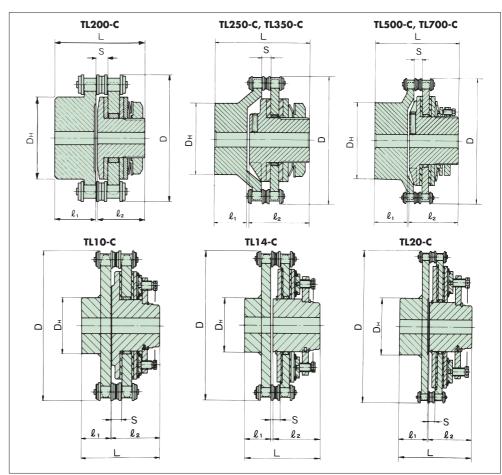

■ Torque setting

- · The keyway is New JIS (JIS B 1301-1996) "normal type"
- · Set screws are included.

### Chamfer and finish

| Bore diameter      | Chamfer dimensions |
|--------------------|--------------------|
| $\phi$ 25 and less | C0.5               |
| $\phi$ 50 and less | C1                 |
| φ 51 and above     | C1.5               |






# Torque Limiter coupling

The Torque Limiter coupling is a flexible coupling that uses a Torque Limiter and special type sprocket, and is connected by 2 rows of roller chains.

Centering the shaft coupling is easy and handling is simple. The Torque limiter acts as an automatic safety device, protecting machinery from damage due to overload.





· Torque Limiter unit of TL200-1LC, TL250-1LC and TL350-1LC have a spacer between the disk spring and lock washer.

Unit: mm

|           | Set torque range        | Max. rpm  |          | e diameter             | Min. bore     | e diameter             | Max. bor      | e diameter             |           |     |                | Dime | nsions     |            |      | Mass |
|-----------|-------------------------|-----------|----------|------------------------|---------------|------------------------|---------------|------------------------|-----------|-----|----------------|------|------------|------------|------|------|
| Model No. | N·m {kgf·m}             | (r/min) * | Coupling | Torque<br>Limiter side | Coupling side | Torque<br>Limiter side | Coupling side | Torque<br>Limiter side | Sprocket  | D   | D <sub>H</sub> | L    | <b>l</b> 1 | <b>l</b> 2 | S    | kg   |
| TL200-1LC | 1.0 ~ 2.0 {0.1 ~ 0.2}   |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL200-1C  | 2.9 ~ 9.8 {0.3 ~ 1.0}   | 1200      | 8        | 7                      | 10            | 10                     | 31            | 14                     | RS 40-16T | 76  | 50             | 55   | 24         | 29         | 7.5  | 1.0  |
| TL200-2C  | 6.9 ~ 20 {0.7 ~ 2.0}    |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL250-1LC | 2.9 ~ 6.9   (0.3 ~ 0.7) |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL250-1C  | 6.9 ~ 27    0.7 ~ 2.8   | 1000      | 13       | 10                     | 15            | 12                     | 38            | 22                     | RS 40-22T | 102 | 56             | 76   | 25         | 48         | 7.4  | 1.9  |
| TL250-2C  | 14 ~ 54    1.4 ~ 5.5    |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL350-1LC | 9.8 ~ 20    1.0 ~ 2.0   |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL350-1C  | 20 ~ 74    2.0 ~ 7.6    | 800       | 13       | 17                     | 15            | 18                     | 45            | 25                     | RS 50-24T | 137 | 72             | 103  | 37         | 62         | 9.7  | 4.2  |
| TL350-2C  | 34 ~ 149 {3.5 ~ 15.2}   |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL500-1LC | 20 ~ 49    2.0 ~ 5.0    |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL500-1C  | 47 ~ 210  4.8 ~ 21.4    | 500       | 18       | 20                     | 20            | 22                     | 65            | 42                     | RS 60-28T | 188 | 105            | 120  | 40         | 76         | 11.6 | 10   |
| TL500-2C  | 88 ~ 420   9.0 ~ 42.9   |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL700-1LC | 49 ~ 118 \ \{5.0 ~ 12\} |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL700-1C  | 116 ~ 569  11.8 ~ 58.1  | 400       | 23       | 30                     | 25            | 32                     | 90            | 64                     | RS 80-28T | 251 | 150            | 168  | 66         | 98         | 15.3 | 26   |
| TL700-2C  | 223 ~ 1080 {22.8 ~ 111} |           |          |                        |               |                        |               |                        |           |     |                |      |            |            |      |      |
| TL10-16C  | 392 ~ 1274  40 ~ 130    | 300       | 33       | 30                     | 35            | 32                     | 95            | 72                     | RS140-22T | 355 | 137            | 189  | 71         | 115        | 26.2 | 66   |
| TL10-24C  | 588 ~ 1860  60 ~ 190    | 300       | 33       | 30                     | 33            | 32                     | /3            | / 2                    | K3140-221 | 333 | 137            | 107  | / 1        | 113        | 20.2 | 00   |
| TL14-10C  | 882 ~ 2666  90 ~ 272    | 200       | 38       | 40                     | 40            | 42                     | 118           | 100                    | RS160-26T | 470 | 167            | 235  | 80         | 150        | 30.1 | 140  |
| TL14-15C  | 1960 ~ 3920 {200 ~ 400} | 200       | 36       | 40                     | 40            | 44                     | 110           | 100                    | K3100-201 | 4/0 | 10/            | 233  | 80         | 130        | 30.1 | 140  |
| TL20-6C   | 2450 ~ 4900 {250 ~ 500} | 140       | 43       | 50                     | 45            | 52                     | 150           | 130                    | RS160-36T | 631 | 237            | 300  | 120        | 175        | 30.1 | 285  |
| TL20-12C  | 4606 ~ 9310  470 ~ 950  | 140       | 43       | 50                     | 45            | 52                     | 150           | 130                    | K3100-301 | 031 | 23/            | 300  | 120        | 1/3        | 30.1 | 203  |

<sup>1.</sup> The products in bold are all stock items. The rest are MTO.

<sup>2. \*</sup> If you intend to use the Torque Limiter at max. rpm, apply a lubricant like molybdenum disulfide to the chain and sprocket teeth. If you intend to use the Torque Limiter at an rpm above the maximum listed above, consult with TEM for more information.

<sup>3.</sup> If the model larger than TL20-12 is required, contact TEM.

# Torque Limiter coupling with finished bore



# Finished bore products are available for quick delivery.

■ Bores and keyways are already finished

Bore finishing is standard for Torque Limiter couplings TL200C to 700C.

### Finished Bore Dimension Chart

Unit: mm

| T 11 % C 15 M 11N1                | Finished bo                                                  | Finished bore dimensions                                                                     |  |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Torque Limiter Coupling Model No. | Torque Limiter side                                          | Coupling side                                                                                |  |  |  |  |  |
| TL200-1LC                         |                                                              |                                                                                              |  |  |  |  |  |
| TL200-1C                          | 10,11,12,14                                                  | 10,11,12,14,15,16,17,18,19,20,22,24,25,28,29,3                                               |  |  |  |  |  |
| TL200-2C                          |                                                              |                                                                                              |  |  |  |  |  |
| TL250-1LC                         |                                                              |                                                                                              |  |  |  |  |  |
| TL250-1C                          | 12,14,15,16,17,18,19,20,22                                   | 15,16,17,18,19,20,22,24,25,28,29,30,32,33,3<br>36,38                                         |  |  |  |  |  |
| TL250-2C                          |                                                              | 30,30                                                                                        |  |  |  |  |  |
| TL350-1LC                         |                                                              |                                                                                              |  |  |  |  |  |
| TL350-1C                          | 18,19,20,22,24,25                                            | 15,16,17,18,19,20,22,24,25,28,29,30,32,33<br>36,38,40,42,43,45                               |  |  |  |  |  |
| TL350-2C                          |                                                              |                                                                                              |  |  |  |  |  |
| TL500-1LC                         |                                                              |                                                                                              |  |  |  |  |  |
| TL500-1C                          | 22,24,25,28,29,30,32,33,35,36,38,40,42                       | 20,22,24,25,28,29,30,32,33,35,36,38,40,42,43<br>45,46,48,50,52,55,56,57,60,63,64,65          |  |  |  |  |  |
| TL500-2C                          |                                                              | 43,40,40,30,32,33,30,37,00,03,04,03                                                          |  |  |  |  |  |
| TL700-1LC                         |                                                              |                                                                                              |  |  |  |  |  |
| TL700-1C                          | 32,33,35,36,38,40,42,43,45,46,48,50,52,55,56,<br>57,60,63,64 | 25,28,29,30,32,33,35,36,38,40,42,43,45,46,48<br>50,52,55,56,57,60,63,64,65,70,71,75,80,85,90 |  |  |  |  |  |
| TL700-2C                          | 37,00,03,04                                                  | 30,32,33,30,37,00,03,04,03,70,71,73,00,03,70                                                 |  |  |  |  |  |
| Date of delivery                  | ExJapan 4                                                    | I weeks by sea                                                                               |  |  |  |  |  |

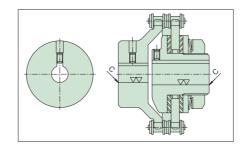
<sup>1.</sup>For finished bore and hardened teeth specifications outside those written in the above chart, please conact TEM for more information.

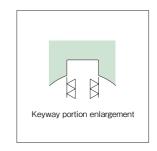
### Model No.

# TL250 - 2C - T18J × C30J - 5.0 Size No. of disk springs Torque Limiter side bore diameter Keyway type: (J: new JIS normal type)

Coupling side bore diameter—

Keyway type: (J: new JIS normal type)—


Set torque (unit: kgf·m, no number is displayed when torque is not set)—


# ■ Bore diameter and keyway specifications

- · Bore diameter tolerance is H7.
- The keyway is New JIS (JIS B 1301-1996) "Normal type"
- · Setscrews are included.

### Chamfer and finish

| Bore diameter      | Chamfer dimensions |
|--------------------|--------------------|
| $\phi$ 25 and less | C0.5               |
| $\phi$ 50 and less | C1                 |
| φ 51 and above     | C1.5               |







### Selection

If using the Torque Limiter with human transportation or lifting devices, take the necessary precautions with equipment to avoid serious injury or death from falling objects.

1 From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher. This torque is the Torque Limiter slip torque.

When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Limiter is installed and rated output power of the motor. Then, multiply by 1.5 to 2.0. This is the Torque Limiter slip torque.

Slip torque should be lower than rated torque.

Gusing the dimension table, verify that the maximum allowable bore diameter of the Torque Limiter is larger than the installation shaft diameter. If the installation shaft diameter is bigger, use a Torque Limiter one size larger.

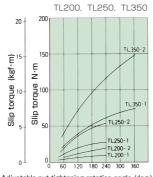
Depending on the thickness of the center member which is clamped, use an appropriate length of bushing. Select a bush by referring to the bush length in the dimension table. Use a single bush or a combination of bushes, whichever is longest without exceeding the thickness of the center member.

### Torque setting

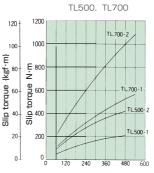
Torque Limiter slip torque is set by tightening the adjusting nuts or bolts.

After installing the Torque Limiter to the equipment, tighten the adjusting nuts or bolts gradually from a loose position to find the optimal position.

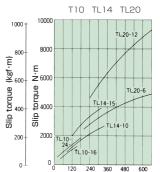
In addition, by using the "Tightening Amount - Torque Correlation Charts" below, the tightening amount of the adjusting nut and bolts for slip torque can be found. However, due to the condition of the friction surface and other factors, the torque for the fixed tightening amount changes.


Using the graph as a rough guide, try test operating the Torque Limiter with the tightening amount slightly loose, then tighten gradually to find the optimal position. This is the most practical method.

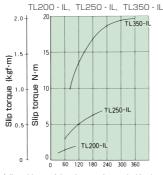
When slip torque stability is especially important, hand tighten the adjusting nut or bolts as much as possible, and then slip approximately 500 times for running-in at a wrench-tightened 60° more. If the rotation speed is fast, split several times and subject it to 500 slips.


With the center member, the torque can be set to the specified amount. In this case, it is necessary to use a finished bore.

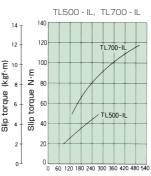
# Tightening Amount and Torque Correlation Chart


Zero (0) point is the condition at which the adjustable nut or adjustable bolts are tightened by hand, and the disk spring is fixed.




Adjustable nut tightening rotation angle (deg.




Adjustable bolt tightening rotation angle (deg.



Adjustable bolt tightening rotation angle (deg.)



Adjustable nut tightening rotation angle (deg.)



Adjustable bolt tightening rotation angle (deg.

### Center member selection and manufacture

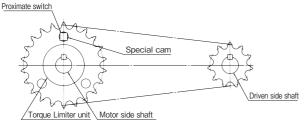
Sprockets and gears can be used as a center member with the Torque Limiter. If the customer intends to select or manufacture the center members by themselves, take the following precautionary steps:

For the Torque Limiter's outer diameter, the minimum diameter of the center member is restricted. When using a sprocket with a chain drive, refer to page 66 for minimum number of teeth.

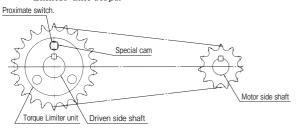
Prinish the friction face sides of the center member (both sides) in 3s - 6s.

**3** For the bore diameter of the center member, machine it within the center member bore diameter tolerance from the dimension table in 3s - 6s.

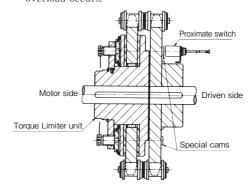
The width in which the center member is clamped should be within the S dimension in the dimension table.


### Torque Limiter's operation detection

When overload occurs, the Torque Limiter slips and protects the machine, but if the driving source is not stopped, the Torque Limiter will continue to slip. If it continues to slip, the friction facing will be abnormally worn and become unusually hot, making it necessary to stop the drive source immediately.


The following are examples that detect Torque Limiter slips and stop the drive by using a proximate switch and digital tachometer.

### Installation examples


Typel When the driven side experiences overload and the Torque Limiter's center member stops.



Type2 When the driven side experiences overload, the Torque Limiter unit stops.



Type 3 When the Torque Limiter is used with a coupling type and the center member side stops when overload occurs.

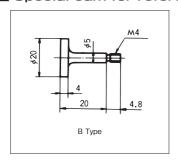


Type 4 When the Torque Limiter is used with a coupling type, and the main unit side stops when overload occurs.

For the installation of Type 4, it is quite difficult to install the special cams, so as much as possible avoid using this type. When using the Torque Limiter with the coupling type, use Type 3.

Slip can be detected within approximately 1 to 10 seconds based on the rotational detection speed if the number of special cams selected is shown in the chart.

### Number of special cams and rotational detection speed


| Number of<br>Special cams | Rotational detection speed range r/min | Number of<br>Special cams | Rotational detection speed range r/min |
|---------------------------|----------------------------------------|---------------------------|----------------------------------------|
| 1                         | 6 ~ 60                                 | 6                         | 1.0 ~ 10                               |
| 2                         | 3 ~ 30                                 | 7                         | 0.85 ~ 8.5                             |
| 3                         | 2 ~ 20                                 | 8                         | 0.75 ~ 7.5                             |
| 4                         | 1.5 ~ 15                               | 9                         | 0.67 ~ 6.7                             |
| 5                         | 1.2 ~ 12                               | 10                        | 0.6 ~ 6.0                              |

Note: In the case of 6 r/min and slower, the range is that of 6  $\sim$  60r/min divided by the number of special cams.

### ■ Special cam dimensions and installation

The special cam is fixed by a screw on the driven side. Use a screw lock to lock the screw.

### ■ Special cam for reference



### ■ Reference Electrical Schematic Diagram



PB1 : Motor start button

PB2 : Motor stop button

RST: BZ, L reset button

MC : Electromagnetic contactor for motor

R : Auxiliary relay

NO : Digital tachometer output a

contact BZ : Buzzer

L : Lamp

Digital tachometer:

OMRON H7CX-R11-N

Proximity switch:

OMRON TL-N5ME2

Note)

We recommend OMRON digital tachometers and proximate switches for the above. For more information, refer to the OMRON catalog.



### ■ Sprockets for the center member

When using the sprocket as a center member, refer to the notes below. In the below chart, the sprocket is used as a center member for the chain drive.

- (1)Minimum number of teeth in which the chain does not interfere with the special cam (same as the reference drawing of the previous page) when using installation types 1 and 2 of the previous page.
- (2)Minimum number of teeth in which the chain does not interfere with the friction facings of the Torque Limiter.
- (3)Bush length
- (4)Sprocket bore diameter (center member bore diameter)

### Torque Limiter only and in the case the special cams shown in the previous page are used in type 2.

| Torque Limiter<br>Model No. | Sprocket bore<br>diameter<br>(center member<br>bore diameter) |                     | Min. No. of sprocket teeth |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |
|-----------------------------|---------------------------------------------------------------|---------------------|----------------------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|
|                             |                                                               | RS35                |                            | RS40                |                |                     |                |                     | 60             | RS80                |                | RS100               |                | RS120               |                | RS140               |                | RS160               |                |
|                             |                                                               | Min.No.<br>of teeth | Bush<br>length             | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length |
| TL200                       | 30 + 0.03                                                     | △ 20                | 3.8                        | 16                  | 6              |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |
| TL250                       | 41 <sup>+ 0.05</sup>                                          |                     |                            | 20                  | 6.5            | 17                  | 6.5            |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |
| TL350                       | 49 + 0.05                                                     |                     |                            | 26                  | 6.5            | 21                  | 6.5            | 18                  | 9.5            | 15                  | 9.5            |                     |                |                     |                |                     |                |                     |                |
| TL500                       | 74 + 0.05                                                     |                     |                            |                     |                | △ 29<br>(30)        | 6.5            | 25                  | 9.5            | 19                  | 9.5            |                     |                |                     |                |                     |                |                     |                |
| TL700                       | 105 + 0.05                                                    |                     |                            |                     |                |                     |                | △ 33<br>(35)        | 9.5            | 26                  | 12.5           | 21                  | 12.5           | 18                  | 12.5           |                     |                |                     |                |
| TL10                        | 135 + 0.07                                                    |                     |                            |                     |                |                     |                |                     |                |                     |                | △ 29<br>(30)        | 12.5           | 24                  | 15.5           | △ 22                | 19.5           |                     |                |
| TL14                        | 183 + 0.07                                                    |                     |                            |                     |                |                     |                |                     |                |                     |                | △ 39<br>(40)        | 15.5           | △ 33<br>(35)        | 15.5           | △ 29                | 19.5           | △ 26                | 23.5           |
| TL20                        | 226 + 0.07                                                    |                     |                            |                     |                |                     |                |                     |                |                     |                | △ 54                | 15.5           | △ 46<br>(60)        | 15.5           | △ 40                | 19.5           | △ 35                | 23.5           |

Note: Those marked with "  $\triangle$  " are not standard A type sprockets. When using a standard stock sprocket, use the number of teeth in ( ).

### In the case the special cams shown in the previous page are used in type 1.

|                             |                                                               |                     |                            |                     |                |                     |                |                     |                |                     | -              |                     |                |                     |                |                     |                |                     |                |
|-----------------------------|---------------------------------------------------------------|---------------------|----------------------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|
| Torque Limiter<br>Model No. | Sprocket bore<br>diameter<br>(center member<br>bore diameter) |                     | Min. No. of sprocket teeth |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |
|                             |                                                               | RS35                |                            |                     | S40            |                     |                | RS60                |                | RS80                |                | RS100               |                | RS120               |                | RS140               |                | RS160               |                |
|                             |                                                               | Min.No.<br>of teeth | Bush<br>length             | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length | Min.No.<br>of teeth | Bush<br>length |
| TL200                       | 30 + 0.03                                                     | △ 25                | 3.8                        | 19                  | 6.0            |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |
| TL250                       | 41 + 0.05                                                     |                     |                            | 24                  | 6.5            | 20                  | 6.5            |                     |                |                     |                |                     |                |                     |                |                     |                |                     |                |
| TL350                       | 49 + 0.05                                                     |                     |                            | 30                  | 6.5            | 24                  | 6.5            | 21                  | 9.5            | 1 <i>7</i>          | 9.5            |                     |                |                     |                |                     |                |                     |                |
| TL500                       | 74 <sup>+ 0.05</sup>                                          |                     |                            |                     |                | 32                  | 6.5            | △ 28<br>(30)        | 9.5            | 21                  | 9.5            |                     |                |                     |                |                     |                |                     |                |
| TL700                       | 105 + 0.05                                                    |                     |                            |                     |                |                     |                | 36                  | 9.5            | △ 28<br>(30)        | 9.5            | △ 23<br>(24)        | 12.5           | 20                  | 12.5           |                     |                |                     |                |
| TL10                        | 135 + 0.07                                                    |                     |                            |                     |                |                     |                |                     |                |                     |                | △ 31<br>(32)        | 12.5           | 26                  | 15.5           | △ 23                | 19.5           |                     |                |
| TL14                        | 183 + 0.07                                                    |                     |                            |                     |                |                     |                |                     |                |                     |                | △ 41<br>(45)        | 15.5           | 35                  | 15.5           | △ 30                | 19.5           | △ 27                | 23.5           |
| TL20                        | 226 + 0.07                                                    |                     |                            |                     |                |                     |                |                     |                |                     |                | △ 56<br>(60)        | 15.5           | △ 47<br>(60)        | 15.5           | △ 41                | 19.5           | △ 36                | 23.5           |

 $Note: Those \ marked \ with \ "$$$ $\triangle$" are not standard $A$ type sprockets. When using a standard stock sprocket, use the number of teeth in ().$ 

# **Axial Guard**

# **Features**

The Axial Guard is a new type of mechanical type overload protection device for mechanisms where the load acts linearly, such as pushers or cranks.

### Highly accurate trip load

Even with repeated loads, the fluctuating trip load variation is always within  $\pm 15\%$ .

### Non-backlash

High rigidity means no backlash for overweight axial loads.

### Easy load adjustment

By simply turning the adjustable screw, load can be adjusted. In the tensile or compression direction, the Axial Guard trips at almost the same load.

### Release type

When overload occurs, the Axial Guard immediately trips and the connection between the drive side and load side is shut off. The drive side's thrust does not transmit.

The resetting requires a small load, making it easy to reset.

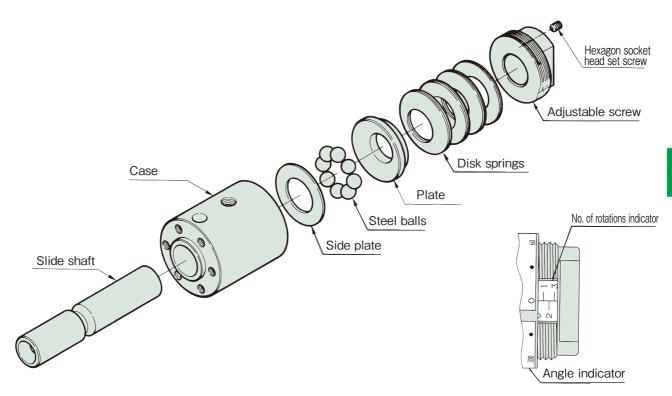
### Easy installation

The end faces of the case and slide shaft have tap holes for easy built-in design.

### Standard stock

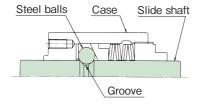
All Axial Guards are in stock.




# Model No.

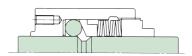
**TGA 150** 

Series name


Maximum setting load(kgf): 65, 150, 250, 350 (4 sizes)

# Construction




# Operating principles

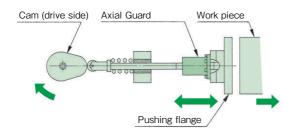
### During operation (connected)

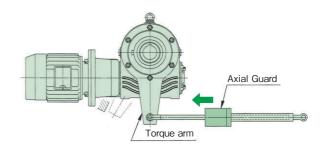


Because the metal ball is held in its groove, thrust from the case (or slide shaft) is transmitted to the load side.

### During overload (tripped)




When the load exceeds the pre-set value, the metal ball pops out of its groove; the connection between the slide shaft and the case disengages, and moves in a free state.




### **Applications**

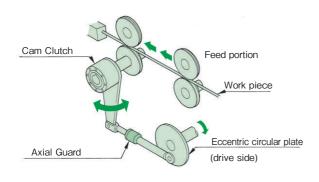
### Pusher

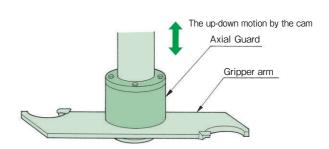
### Tie-rod of the shaft-mounted reducer





The cam pushes the work piece.


When overload occurs due to the over-weighted work piece or jamming, the Axial Guard trips and protects the machine.

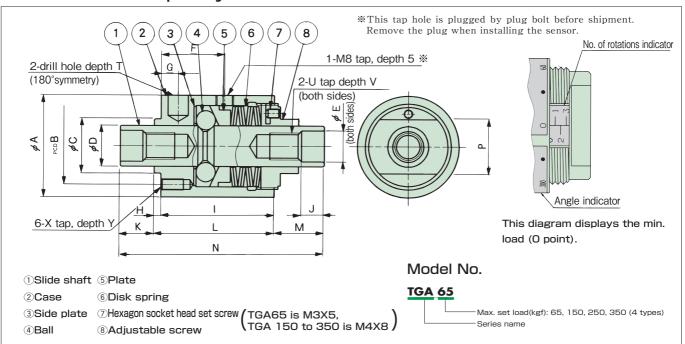

It is installed at the torque arm rotation-prevention portion of the shaft-mounted reducer.

When overload occurs and the moment is higher than the preset value, the Axial Guard trips.

### Crank mechanism

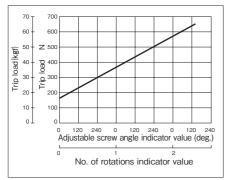
### The machining center's gripper

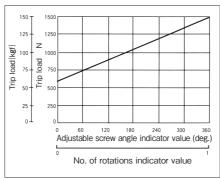


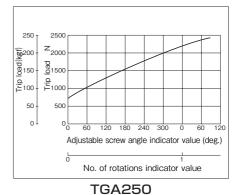



The combination of the crank and Cam Clutch motion sends the wire rod. When a foreign object gets caught up in the machine or the wire rod is deformed, overload occurs and the Axial Guard trips, thus protecting the feed portion.

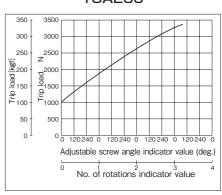
When a tool is being changed, the gripper portion is driven in the axial direction by the cam mechanism. When a tool gets caught up or the gripper hits the obstacle, the Axial Guard trips, thus protecting the cam and gripper from damage.





### Transmissible capacity/dimensions




|           |                                |    |    |         |    |         |      |     |   |    |    |    |    |    |     |    |    |     |     |    |    | Unit | : mm       |
|-----------|--------------------------------|----|----|---------|----|---------|------|-----|---|----|----|----|----|----|-----|----|----|-----|-----|----|----|------|------------|
| Model No. | Trip load set range<br>N {kgf} | A  | В  | C<br>h7 | D  | E<br>H7 | F    | G   | н | 1  | J  | K  | L  | М  | Z   | Р  | S  | Т   | U   | ٧  | Х  | Y    | Mass<br>kg |
| TGA65     | 147 ~ 637 { 15 ~ 65 }          | 33 | 23 | 14      | 10 | 7       | 22.5 | 5   | 2 | 40 | 5  | 5  | 42 | 11 | 58  | 16 | 5  | 7.5 | M 6 | 7  | МЗ | 6    | 0.2        |
| TGA150    | 588 ~ 1470 { 60 ~ 150}         | 38 | 28 | 18      | 14 | 10      | 24   | 6   | 2 | 43 | 7  | 8  | 45 | 19 | 72  | 21 | 7  | 8   | M 8 | 10 | M4 | 8    | 0.4        |
| TGA250    | 735 ~ 2450   75 ~ 250          | 45 | 34 | 24      | 18 | 14      | 28   | 7.5 | 3 | 50 | 10 | 15 | 53 | 22 | 90  | 24 | 8  | 9   | M12 | 14 | M5 | 10   | 0.7        |
| TGA350    | 980 ~ 3430 (100 ~ 350)         | 56 | 44 | 28      | 22 | 16      | 34   | 9   | 3 | 63 | 10 | 20 | 66 | 24 | 110 | 30 | 10 | 12  | M14 | 15 | M6 | 10   | 1.2        |


### Load Curve (Tightening Amount-Load Correlation Diagram)



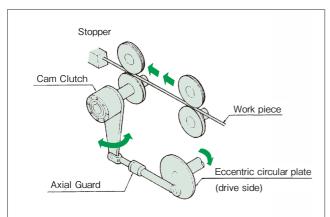




TGA65 TGA150



**TGA350** 

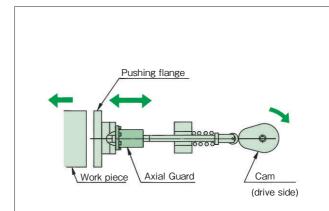



### Guide to calculating load

In order for the Axial Guard to be most effective as a safety protection device, install it on the driven side in the area where overload is most likely to occur.

### Determining trip load

From the machine's strength and load, as well as other information, set the trip load at the point where it should not go any higher. When the limit value is not clear, it is decided by the load calculation (refer to the example below). As the low load on the equipment gradually increases, determine the appropriate set load.




This is an example of the combination of the crank and Cam Clutch motion sending the wire rod intermittently.

The following is a checklist of items for calculating load:

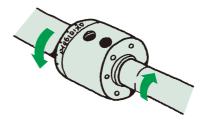
- The generated load due to the acceleration velocity of the drive side's crank motion.
- The impact load when hitting the work piece
- The load when machining the work piece
- Friction between each part

In addition, after checking the strength of each part, carry out a working load estimation for the Axial Guard.

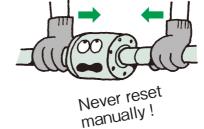


This is an example of pusher actuation by the cam mechanism.

- The generated load is due to drive side cam acceleration velocity
- The impact load when hitting the work piece
- The generated load when pushing the work piece
- The friction when pushing the work piece


In addition, after checking if the work piece has been deformed and verifying the strength of each part, carry out a working load estimation for the Axial Guard.

### Caution


1 For most situations, avoid using the Axial Guard with human transportation or lifting devices. If you decide to use an Axial Guard with these devices, take the necessary precautions on the equipment side to avoid serious injury or death from falling objects.



2 For the Axial Guard, the case and slide shaft can rotate independently based on each shaft center. In the case that the prevention of independent rotation during operation is required, refer to page 73.



3 When resetting, the slide shaft or case rapidly/ suddenlymoves in the shaft direction, causing mechanical shock. Therefore, do not reset the Axial Guard by hand or touch it directly.

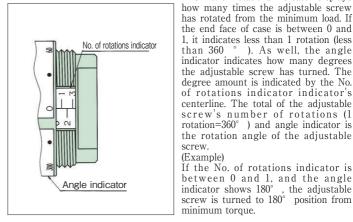


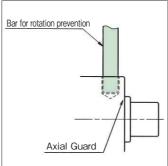
71



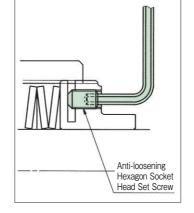
). As well, the angle

The No. of rotations indicator displays


1, it indicates less than 1 rotation (less


than 360

### How to set the trip load


1 All Axial Guards are shipped with the load set at the minimum point (min. load). Confirm that the number of rotations indicator and angle indicator are set at "0". (Refer to the diagram on the right)

- 2 Loosen the hexagon socket head set screw to prevent loosing of adjustable screw.
- 3 From the information in the "Tightening Amount Load Correlation Chart" on page 70, find the tightening angle of an equivalent adjustable screw for the predetermined trip load. Tighten to 60° less than the predetermined angle.
- 4 Next, carry out a load trip test. Gradually tighten to optimal trip load and set.
- 5 When the load has been set, tighten the hexagon socket head set screw to prevent loosing of adjustable screw portion, and verify that the set screw is locked. (Refer to the diagram on the right)

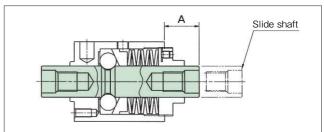




When turning the adjustable screw, to prevent the Axial Guard from turning together with the adjustable screw, insert the bar into the drilled hole at the outer diameter of the cover.



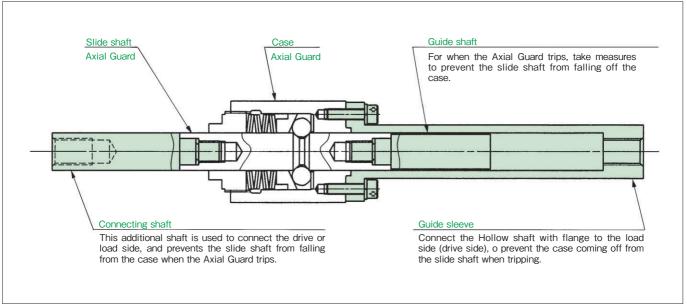
### Reset


- 1 Before resetting, stop the machine and remove the cause of overload.
- 2 It is reset automatically when restarting the drive side (motor) to reverse load direction of trip direction. Turn the input (motor) using low rpm or inching. The axial load that is necessary for resetting is listed in the chart on the right.
- 3 When the Axial Guard resets, it makes a distinct "click" sound. To check whether the Axial Guard has reset, refer to dimension A in the diagram on the right.

### Caution

When resetting, the slide shaft or cover rapidly moves in the axial direction, causing mechanical shock. Therefore, do not reset by hand or directly touch the Axial Guard.

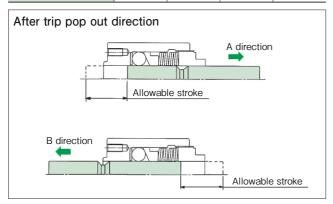
| Model No. | * Axial direction load for reset | Dimension A when resetting |
|-----------|----------------------------------|----------------------------|
| TGA 65    | 83 N{8.5 kgf}                    | 11                         |
| TGA150    | 196 N{20 kgf}                    | 19                         |
| TGA250    | 343 N{35 kgf}                    | 22                         |
| TGA350    | 490 N{50 kgf}                    | 24                         |

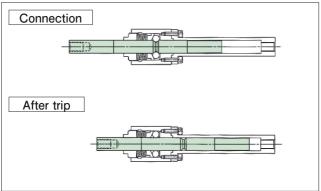

\* At Max. load





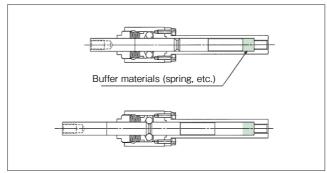
### Auxiliary parts


By incorporating the auxiliary parts in the below diagram, it is easier to use the Axial Guard.



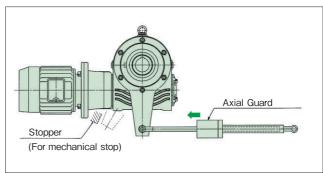

### Axial Guard allowable stroke (Axial Guard unit only)

If the Axial Guard exceeds the stroke limits from the table below, the slide shaft will come out. In this case, the ball will fall out and the Axial Guard's functions will be lost. If after tripping the stroke is more than what is listed in the below table, connect the connecting and guide shafts.


| Model No.                    | TGA65 | TGA150 | TGA250 | TGA350 |
|------------------------------|-------|--------|--------|--------|
| A direction allowable stroke | 14    | 20     | 30     | 38     |
| B direction allowable stroke | 14    | 22     | 24     | 26     |






### 1. The mechanical stop limits stroke after trip

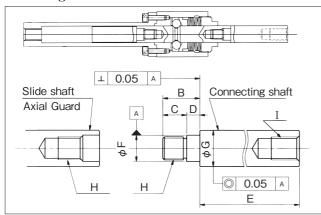
In the case of stopping the stroke at a certain position by sensor detection when tripping, it will become necessary to use a backup mechanism for stopping. Install a spring or other such buffer material to absorb the stroke.



#### 2. When installing at shaft-mounted reducer tie rod

This is an example of the application being used for shaft-mounted reducer torque arm as an overload protection device. Load direction is rotational direction, and the reducer rotates when tripping. Because of the reducer rotation, after the sensor detects overload and stops the motor, it stops mechanically at a certain position. For possible applications and model numbers, contact TEM.





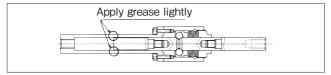

### Recommended manufacturing dimensions for auxiliary devices

When installing a connecting shaft, guide shaft, guide sleeve or bolt to an Axial Guard, apply an adhesive for metal to the threaded portion to prevent loosening. (Loctite, etc.) (TEM recommends Loctite 262.)

### 1. Guide shaft, connecting shaft

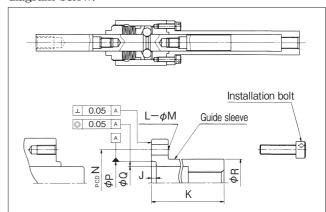
Use the tap hole at the end face of the slide shaft to connect the guide and connecting shafts. The recommended dimensions of the connecting portion are in the diagram below.




| Model N | o. ( | B<br>(- 0.2) | C<br>(0<br>- 0.2) | D | E                       | F (h7) | G<br>(h9) | H<br>screw<br>size | l *<br>screw<br>size |
|---------|------|--------------|-------------------|---|-------------------------|--------|-----------|--------------------|----------------------|
| TGA65   |      | 10           | 6                 | 4 |                         | 7      | 10        | M6×P1.0            | M6×P1.0              |
| TGA150  | )    | 15           | 9                 | 6 | Select by installation  | 10     | 14        | M8×P1.25           | M8×P1.25             |
| TGA250  | )    | 22           | 13                | 9 | length,<br>stroke, etc. | 14     | 18        | M12×P1.75          | M12×P1.75            |
| TGA350  | )    | 23           | 14                | 9 | siroke, etc.            | 16     | 22        | M14×P2.0           | M14×P2.0             |

<sup>\*</sup> Not necessary for guide shaft

### Installation


### 1. Installing to the machine

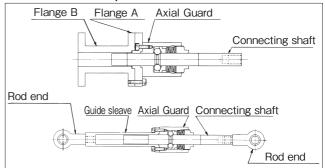
- (1) Before installing the Axial Guard to the machine, completely wipe off any dust or dirt from the slide shaft, the spigot facing of the case and taps.
- (2) Next, connect the slide shaft and the case tap portion. TEM recommends an adhesive for metals be applied to the tap portion or the bolt outer diameter to prevent any loosening. (Loctite 262 recommended)
- (3) Make sure not to fix both the Axial Guard slide shaft side and the case side when installing the Axial Guard. The Axial Guard has no coupling function, so if it is installed too rigidly it will not properly function, potentially causing a malfunction or machine damage.
- (4) When the guide sleeve and guide shaft are connected to the Axial Guard there is a possibility that the inner diameter of the guide sleeve and the outer diameter of the guide shaft end face may interfere. Just in case, apply grease to the portion on the diagram below. (Refer to the maintenance section on page 76 for information about grease brands.)



#### 2. Guide sleeve

Use the tap holes at the end face of the case to connect the case and guide sleeve. The recommended dimensions of the connecting portion are in the diagram below.

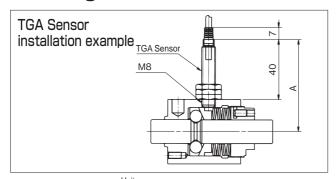



| Model No. | (+ 0.2) | K                       | L | М   | N  | P (H7) | (+ 0.2) | C<br>(0<br>- 0.2) |
|-----------|---------|-------------------------|---|-----|----|--------|---------|-------------------|
| TGA65     | 2.5     |                         | 6 | 3.4 | 23 | 14     | 10.5    | 16                |
| TGA150    | 2.5     | Select by installation  | 6 | 4.5 | 28 | 18     | 14.5    | 20                |
| TGA250    | 3.5     | length,<br>stroke, etc. | 6 | 5.5 | 34 | 24     | 18.5    | 24.5              |
| TGA350    | 3.5     | siloke, elc.            | 6 | 6.6 | 44 | 28     | 22.5    | 31                |

- \* When the Axial Guard is installed vertically, (lengthwise direction) grease may leak through the gap between the slide shaft and case or the adjustable screw. To avoid any problems, make sure to replenish grease at frequent intervals. (Refer to page 76 for maintenance information)
- \* Do not use the Axial Guard if there is a possibility that a falling accident of the drive or load side may occur when tripping. Such an accident may lead to serious injury or machine damage.

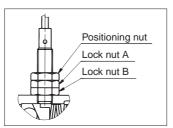
### 2. Overload detection

When using the Axial Guard, make sure to combine it with the sensor mechanism to ensure that overload can be properly detected. (Refer to page 75 for overload detection information)


### Installation example





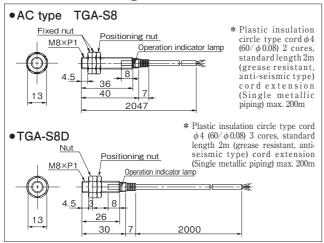

### Overload detection

### When using the Axial Guard make sure to use the TGA sensor to detect trip during overload.

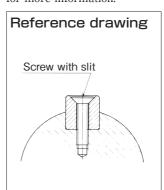


|           |      | Unit : mm    |  |  |  |  |  |
|-----------|------|--------------|--|--|--|--|--|
| Model No. | Α    | Thread depth |  |  |  |  |  |
| TGA65     | 52   |              |  |  |  |  |  |
| TGA150    | 54.5 | 4.5          |  |  |  |  |  |
| TGA250    | 58   | 4.5          |  |  |  |  |  |
| TGA350    | 63.5 |              |  |  |  |  |  |
| •         |      |              |  |  |  |  |  |

\*\*This tap hole is plugged by plug bolt before shipment. Remove the plug when installing the sensor.




Fix the TGA Sensor to the case by screwing it into the tap holes. After fixing the sensor to the case, screw on lock nut A last to make it lock in place (double nut). (The positioning nut is glued with an adhesive, so do not forcibly rotate it.)


### ■ TGA Sensor Specifications

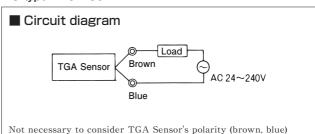
|                               |                              | AC type                                               | DC type                                             |  |  |  |
|-------------------------------|------------------------------|-------------------------------------------------------|-----------------------------------------------------|--|--|--|
| I                             | Model No.                    | TGA - S8                                              | TGA - S8D                                           |  |  |  |
| Power                         |                              | AC24 ∼ 240V                                           | DC12 ~ 24V                                          |  |  |  |
| voltage                       | Possible use range           | AC20~264V(50/60Hz)                                    | DC10 ~ 30V                                          |  |  |  |
|                               | ent consumption              | Less than 1.7mA(at AC200V)                            | Less than 13mA                                      |  |  |  |
| Control o                     | utput (open, close capacity) | 5 ~ 100mA                                             | Max. 200mA                                          |  |  |  |
| Indicator lamp                |                              | Operation indicator                                   |                                                     |  |  |  |
| Ambient operating temperature |                              | $-$ 5 $\sim$ + 70 $^{\circ}$ C (no condensation)      |                                                     |  |  |  |
| Ambie                         | nt operating humidity        | 35 ∼ 95% RH                                           |                                                     |  |  |  |
| C                             | Output form                  | NC (Output open/close of detecting sensor plate       |                                                     |  |  |  |
| Operation form                |                              | _                                                     | NPN                                                 |  |  |  |
| Insulation resistance         |                              | More than 50MΩ (at DC500V mega) Charge portion - Case |                                                     |  |  |  |
| Mass                          |                              | Approx. 45g                                           | (with 2m cord)                                      |  |  |  |
| Res                           | idual voltage                | Refer to characteristic data                          | Less than 2.0V (Load current 200mA, 2m cord length) |  |  |  |

### ■ Measurement Diagram



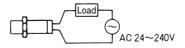
When using the TGA Sensor it is necessary to stop the slide shaft side and case side rotation. As in the diagram below, stop rotation by putting the slide key between the guide sleeve and the guide shaft. For other methods, contact TEM for more information.




Like the diagram on the left, fix the slide key to the shaft with a slotted head countersunk screw (JISB1101). Screw sizes are listed below.

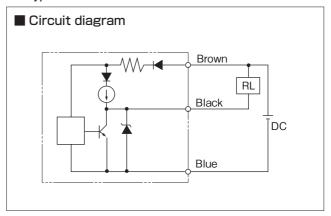
| Model No. | Screw size |
|-----------|------------|
| TGA65     | M2         |
| TGA150    | M2         |
| TGA250    | M2         |
| TGA350    | M3         |

### ■ TGA Sensor handling


Refrain from striking, swinging or putting excessive force on the detecting portion.

### AC type TGA-S8




#### Precautions for wiring

 Make sure to connect the load at first, then turn on the power. If the power is turned on without connecting the load, it will be damaged.



 In order to prevent malfunction or damage due to surge or noise, insert the TGA sensor code in a individual piping when it runs close to the power cable.

### DC type TGA-S8D



### About choosing load and wiring

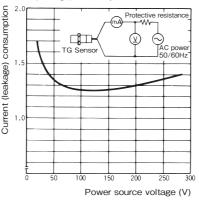
### Connecting to the power source

Make sure to connect to the power source through load. A direct connection will break the elements inside.

### Metal piping

In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

#### Surge protection


In the case where the TGA Sensor is near a device that generates a large surge (motor, welding machine, etc.), the TG Sensor contains a surge absorption circuit, but also insert a varistor to the source.

#### • The effect of current consumption (leakage)

Even when the TGA Sensor is OFF a small amount of current continues to flow to keep the circuit running. (Refer to the "Current Consumption (leakage) Graph".) Because of this, a small voltage occurs in the load that can sometimes lead to reset malfunction. Therefore,

confirm that the voltage of the load is less than the reset voltage before use. As well, if using the relay as load, depending on the construction of the relay, a resonance may occur due to the current leaks when the sensor is OFF.

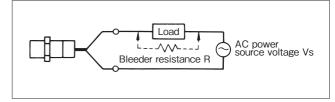
Current (leakage) Consumption Characteristics



#### When power voltage is low

When power source voltage is lower than AC48V and load current is less than 10mA, the output residual voltage when the TGA Sensor is ON becomes large. When it is OFF, the residual voltage of load becomes large. (Refer to "Residual Voltage Characteristics of Load".) Take caution when using the load such as a relay operated by voltage.

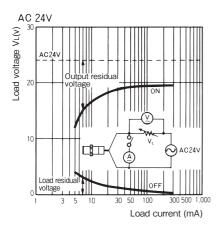
#### When load current is small

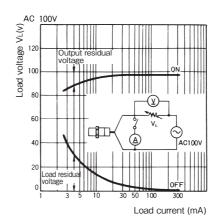

When load current is smaller than 5mA, residual voltage of load becomes large in the TGA Sensor. (Refer to "Residual Voltage Characteristics of Load".) In this case, connect the breeder resistance with load parallel, apply load current at more than 5mA, and set the residual voltage less than return voltage of load. Calculate the breeder resistance and allowable power using the following calculations. TEM recommends to use  $20k\,\Omega$  at AC100V and more than 1.5W (3W), and  $39k\,\Omega$  at AC200V and more than 3W (5W) for safe. (If heat generation becomes a problem, use the Wattage shown in ( ).

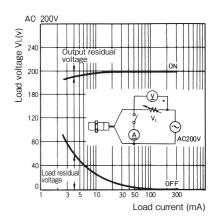
$$R \le \frac{V}{5-i} (k\Omega)$$

$$P \ge \frac{V^2s}{5-i} (mW)$$

P: Wattage of breeder resistance


i : Current applied to the load (mA)





#### Load with large inrush current

As for the load with large inrush current (1.8A and above) such as a lamp or motor, the opening and closing element can be deteriorated or be broken. In this case, use along with a relay.

### Residual Voltage Characteristics







### Maintenance

The Axial Guard is packed in grease for shipment. Add the grease shown in the right table once a year or every 100 trips.

| Kyodo Oil | Sumitomo Lubricant | Dow Corning Toray    | STT         |
|-----------|--------------------|----------------------|-------------|
| Grease HD | Low temp grease    | Molykote 44MA Grease | Solvest 832 |





# Safety Devices

# Electronic Shock Relay

|     | Features                                                                 | p79       |
|-----|--------------------------------------------------------------------------|-----------|
|     | Applications                                                             | p80       |
|     | Series reference chart                                                   | p81       |
|     | Notes when selecting:<br>Special type and summary of<br>additional specs | p82       |
| 000 | Shock Relay SC Series                                                    | p83~p93   |
| 000 | Shock Relay ED Series                                                    | p94~p96   |
|     | Shock Relay 150 Series                                                   | p97~p100  |
|     | Shock Relay SS Series                                                    | p101~p103 |
|     | Shock Relay SA Series                                                    | p104~p106 |
| 17  | Shock Relay SU Series                                                    | p107~p108 |
| .00 | Shock Relay 50 Series                                                    | p109~p110 |



# Shock Relay

# Swiftly detects equipment overload!

The Shock Relay is a current monitoring device that quickly detects motor overload, thus protecting your equipment from costly damage.





### **Features**

### 1. Instantly detects overcurrent

When the motor current exceeds the predetermined current value, the relay contact signal can be output after a preset time.

For example, when a foreign object gets caught up in the conveyor, the Shock Relay sends a signal causing an emergency stop, thus minimizing equipment damage.

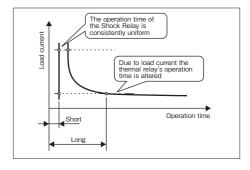
### It's not a thermal relay

The purpose of the thermal relay is to protect the motor from burnout. When the motor current continually exceeds the rated value for a certain period of time, an abnormal signal is sent to protect the motor from burnout. Generally, it takes a long time for operation to begin, so it is not suitable for equipment/machine protection.

### 2. Easy to install on existing equipment

The Shock Relay is an electrical protection device.

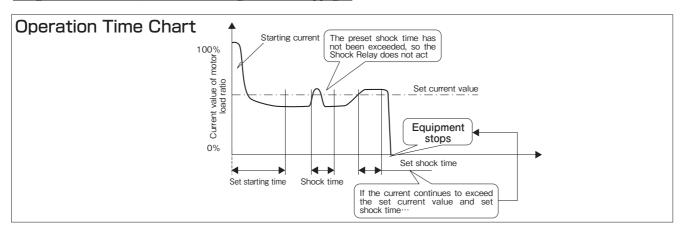
In the case that the Shock Relay is added to existing equipment, it is not necessary to make major modifications to the device as in the case of the mechanical type.


Because the Shock Relay is installed inside the control panel, it can function outdoors or in harsh environments.

# 3. The abnormal signal is only output under abnormal conditions

The Shock Relay sends an abnormal signal when overcurrent continues to exceed the preset period of time.

Sometimes during normal operation conveyors will experience insignificant short time current overloads due to reasons such as the current pulsation of the equipment, or when packages are put on the conveyor.


By using the shock time function these small overloads will not be recognized as overloads, therefore avoiding nuisance stoppages.



|               | Operation time | Protected object |
|---------------|----------------|------------------|
| Shock Relay   | Short          | Equipment        |
| Thermal Relay | *Long          | Motor            |

\*If the motor current slightly exceeds the preset value, the thermal relay will not work. Even if it does work, it will do so slowly.

|            | Existing equipment         | Environment                         |
|------------|----------------------------|-------------------------------------|
| Electrical | Easy to install later      | Built inside the panel              |
| Mechanical | Difficult to install later | Necessary environmental precautions |



### **Product Applications**

### SC Series

### Mixer



### Operation

- When mixing has just started and the load is heavy, the mixer operates at a low speed.
- 2. When the load becomes lighter after some time of mixing, an output signal of 4 to 20mA is sent to a sequencer to switch the mixing to a higher speed.

### **Key Points**

Output of 4 to 20mA which enables actions according to the actual load.

### **ED Series**

### Lifting device for illumination and screens



### Operation

- 1. Due to over-installation of the lighting system, when the total weight of the baton exceeds the permissible load, the lifting device will be automatically shut down.
- 2. When the lifting device becomes overloaded during operation it automatically shuts down.

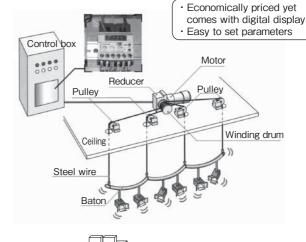
### **Key Points**

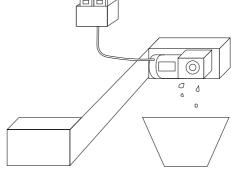
During operation the motor current is displayed digitally, and allowable load and stopping due to overload can be set as a digital numeric value.

### SS Series

### Chip Conveyor




### Operation


Protects the conveyor from damage when a tool gets caught in its belt.

### **Key Points**

The driver has been made more compact and less expensive.

- ※A built-in Shock Relay in the motor terminal box type is available.
- Ideal for the hollow type reducer (for applications where it is difficult to install a mechanical safety device)
- Easy to change settings
- Even with large torque the SS Series retains its compact size





### **SU Series**





### Operation

Prevent the pump motor from burnout due to water shortage.

### **Key Points**

Compact body, economical, and test function



### Shock Relay

### Series Specifications

| Series name               |                                                         | SC Series                                                                                         | ED Series                                                                              | 150 Series                              | SS Series                                                                | SA Series                                                                | SU Series                                                           | 50 Series                              |  |
|---------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|--|
|                           | Model No.                                               | TSBSCB/S06<br>~ TSBSCB/S60                                                                        | TSB020ED-1, -2<br>~ TSB550ED-1, -2                                                     | TSB151, 152                             | TSBSS05 ∼ 300                                                            | TSBSA05 $\sim$ 300                                                       | TSBSU05-2<br>∼ TSBSU60-2                                            | TSB50                                  |  |
|                           | Features                                                | Digital display,<br>Communication function<br>selectable self-<br>holding/automatic<br>reset type | Digital display,<br>economical,<br>selectable self-<br>holding/automatic<br>reset type | Analog display,<br>self-holding<br>type | Economical,<br>self-holding<br>type                                      | Economical,<br>automatic reset<br>type                                   | Economical,<br>self-holding<br>type<br>Under-load<br>Detection Type | Economical,<br>automatic reset<br>type |  |
| Motor                     | (kW) 132 90 75 22 Combined 11 with 3.7 external 0.2 0.1 |                                                                                                   |                                                                                        |                                         |                                                                          |                                                                          |                                                                     |                                        |  |
|                           | Power source (V)                                        | 200/220 400/440                                                                                   | 200/220 400/440                                                                        | 200/220 400/440                         | 200/220 400/440                                                          | 200/220 400/440                                                          | 200/220 400/440                                                     | 200/220 400/440                        |  |
|                           | Operation setting level                                 | Ampere                                                                                            | Ampere                                                                                 | The ratio of motor-rated                | Ampere                                                                   | Ampere                                                                   | Ampere                                                              | The ratio of motor-rated               |  |
|                           |                                                         | (A)                                                                                               | (A)                                                                                    | current value (%)                       | (A)                                                                      | (A)                                                                      | (A)                                                                 | current value (%)                      |  |
| S                         | tart time setting range                                 | 0.2 ~ 12.0s adjustable                                                                            | 0.2 ~ 10.0s adjustable                                                                 | 0.2 ~ 20s adjustable                    | 0.2 ~ 30s adjustable                                                     | 0.2 ~ 10s adjustable                                                     | No                                                                  | 3s (fixed)                             |  |
| Sl                        | nock time setting range                                 | $0.2\sim5.0$ s adjustable                                                                         | 0.2 ~ 5.0s adjustable                                                                  | 0.2 ~ 3s adjustable                     | 0.3 ~ 10s adjustable                                                     | 0.2 ~ 5s adjustable                                                      | 0.2 ∼ 30s                                                           | 0.3 ~ 3s adjustable                    |  |
| 0                         | peration power source                                   | ration power source $AC100 \sim 240V$ $200$                                                       |                                                                                        | AC100/110V or<br>AC200/220V 50/60Hz     | AC100 ∼ 240V                                                             | AC100 ∼ 240V                                                             | AC200 ~ 240V                                                        | AC100/110V or<br>AC200/220V 50/60Hz    |  |
| Cor                       | dition of output relay after activation                 | Selectable; self-holding<br>or automatic reset                                                    | Selectable; self-holding or automatic reset                                            | Self-holding                            | Self-holding                                                             | Automatic reset                                                          | Self-holding                                                        | Automatic reset                        |  |
|                           | Test function                                           | 0                                                                                                 | 0                                                                                      | 0                                       | 0                                                                        | 0                                                                        | 0                                                                   | ×                                      |  |
|                           | Operation display                                       | LED digital display                                                                               | LED digital display                                                                    | LED light                               | LED light                                                                | LED light                                                                | LED light                                                           | ×                                      |  |
| *2                        | Open phase, reverse phase, phase unbalance detection    | 0                                                                                                 | ×                                                                                      | ×                                       | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
|                           | Alarm output                                            | 0                                                                                                 | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
|                           | DIN rail installed                                      | 0                                                                                                 | 0                                                                                      | ×                                       | 0                                                                        | 0                                                                        | 0                                                                   | ×                                      |  |
|                           | Display meter                                           | Digital meter current value display                                                               | Digital meter current value display                                                    | Analog meter % display                  | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
| C                         | T (current transformer)                                 | Built-in (for large capcity<br>motors, external CT is used<br>together.)                          | Built-in                                                                               | External CT separate                    | Built-in (for large capcity<br>motors, external CT is used<br>together.) | Built-in (for large capcity<br>motors, external CT is used<br>together.) | Built-in                                                            | External CT separate                   |  |
| *4<br>-₩                  | Impact load detection                                   | ×                                                                                                 | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
| Special models            | 1A input                                                | ×                                                                                                 | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
| Spec                      | Lower and upper limit detection                         | 0                                                                                                 | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
| <b>*4</b>                 | Conforms to UL/cUL standards                            | ×                                                                                                 | 0                                                                                      | ×                                       | Δ                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
|                           | CE marking                                              | 0                                                                                                 | 0                                                                                      | ×                                       | 0                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
| S                         | Conforms to CCC standards                               | ×                                                                                                 | 0                                                                                      | ×                                       | Δ                                                                        | Δ                                                                        | ×                                                                   | ×                                      |  |
| ation                     | Subtropical specifications                              | ×                                                                                                 | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | Δ                                      |  |
| cific                     | Support for abnormal voltage of control power supply    | ×                                                                                                 | *3 ×                                                                                   | Δ                                       | *3 ×                                                                     | *3 ×                                                                     | *3 ×                                                                | $\triangle$                            |  |
| l spe                     | Panel installation                                      | *3 (                                                                                              | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | ×                                      |  |
| _                         |                                                         | *5 ×                                                                                              | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | Δ                                      |  |
| ionc                      | Start time modification                                 |                                                                                                   |                                                                                        |                                         |                                                                          | 1                                                                        |                                                                     |                                        |  |
| Additional specifications | Shock time modification                                 | ×                                                                                                 | ×                                                                                      | Δ                                       | ×                                                                        | ×                                                                        | ×                                                                   | $\triangle$                            |  |

 $<sup>\</sup>bigcirc \cdots \text{Standard specs} \quad \triangle \cdots \text{Special MTO} \quad \times \cdots \text{Not available}$ 

Notes: %1. This is the added voltage fluctuation range of use in regard to nominal voltage.

<sup>※2.</sup> Open phase ······ the motor lacks 1 phase.

Phase reversal  $\ \cdots$  the phase of the power supply to the motor becomes inverted.

Phase unbalance ··· the phase current becomes unbalanced. The maximum value of the phase current is detected when it is greater than or equal to 2 x the minimum value.

<sup>\*\*3.</sup> Even the voltage for operation is not standard, it is possible to use the standard units if the voltage fluctuation is taken into consideration and the voltage is within the above range.

<sup>\*4.</sup> For more information, refer to page 82.

<sup>※5.</sup> Panel mounting type must be selected.

### Selecting a Shock Relay

 When used with human transportation equipment or lifting devices, install a suitable protection device on that equipment/ device for safety purposes. Otherwise an accident resulting in death, serious injury or damage to equipment may occur.

### 2. CT (current transformer)

The CT is essential for current detection (150 Series, 50 Series only). For more information about the appropriate CT, refer to the page of each series.

### 3. Model Selection for Special Capacity and/or Motor Voltage.

Normally a Shock Relay can be selected by motor capacity, but when the motor capacity and/or motor voltage is special (a standard Shock Relay can be used up to a maximum of 600V), select a Shock Relay based on the rated motor current value (set current range).

### 4. Operation Power Source

The operation power source described in the chart is the standard. For operation power voltages other than the standard, the SS, SA and SC Series have flexible power supplies. The 150 Series with a special operation power source is available as a special MTO product.

### 5. Output Relay Operation

The output relay operation consists of two modes: The activation type and the reverting type when overcurrent is detected.

In the event of a power outage, make sure to switch off the machine as the sudden activation of the output relay may cause an accident or equipment damage

### 1) Activation type when overcurrent is detected

The output relay is activated (contact inverts) only when overcurrent is detected.

Corresponding Models ED Series, SA Series, 150 Series, 50 Series

#### 2) Reverting type when overcurrent is detected

When the power source for the Shock Relay is ON, the output relay is activated (contact inverts). When overcurrent is detected, the output relay reverts to its original state.

Corresponding Model SS Series

### 3) Activation type/ Reverting type

It is possible to switch between these two modes.

Corresponding Model SC Series

### 6. Self-holding and Automatic Resetting

The methods used for output relay resetting are the self-hold and automatic resetting types.

#### 1) Self-holding type

Even after overcurrent has stopped, the self-holding mode continues to function. In order to return it to normal operation, push the RESET button or cut the operation power supply.

Corresponding Models SS Series, 150 Series

### 2) Automatic Reset Type

The output relay automatically resets after overcurrent is gone.

Corresponding Models SA Series, 50 Series

3) Self-holding Type/ Automatic Resetting Type It is possible to switch between the above two modes.

Corresponding Models ED Series, SC Series

### 7. Inverter Drive Applicability

- 1) Detection accuracy decreases but generally if it is in within the 30 60Hz range, it should be insignificant.
- 2)Even within the 30 60Hz range, when the inverter accelerates and decelerates, and the current increases or decreases, the Shock Relay can sometimes cause an unnecessary trip. Slowly accelerate and decelerate or set it so that there is some leeway in load current within the allowable range.
- 3) Connect the CT to the secondary side of the inverter, but make sure to connect the Shock Relay operation power source to a commercial power source (never connect it to the secondary side of the inverter).

### 8. Note

When the inertia of the equipment/ machine is large or the speed reduction ratio from the motor is large, the Shock Relay may sometimes not work.

Conduct a trial test first before putting it into regular use.



Refer to the manual for further details.

### Outline of Special Models and Additional Specifications (Special models are available based on the 150 or 50 Series.)

| Special models                                       | Outline of specifications                                                                                                                                                                                                                                                            | Special unit model |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Impact load detection                                | Impact load detection  Separately from the usual overload, abnormally large current is instantly detected and outputted. Impact load settings can be set from 30%-300%. Impact load shock time is within 0.05s. Other functions and outline dimensions conform to product standards. |                    |
| 1A input                                             | When the secondary side of CT is 1A, it can input directly to the Shock Relay.  (It's not necessary to consider motor capacity.) Other specifications and outline dimensions conform to product standards.                                                                           |                    |
| Upper-lower limit detection                          | Detects both overload and under-loads; however, because there is 1 output relay, it cannot distinguish between upper and lower limits.                                                                                                                                               | TSB151W<br>TSB152W |
|                                                      |                                                                                                                                                                                                                                                                                      |                    |
| Additional specifications                            | Outline of specifications                                                                                                                                                                                                                                                            | Order symbol       |
| Subtropical specifications                           | Can be used when ambient humidity is 90% RH and below. Other specifications conform to standard products.                                                                                                                                                                            | S                  |
| Support for abnormal voltage of control power supply | Power source voltage: AC230V, AC240V, AC115V, AC120V (please contact us for more information on other voltages)                                                                                                                                                                      | V                  |
| Panel installation                                   | It can be mounted on the control panel surface and operated.                                                                                                                                                                                                                         | Р                  |
| Start time modification                              | The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 ···). Other specifications conform to standard products.                                                                                               | T1                 |
| Shock time modification                              | The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 ···). Other specifications conform to standard products.                                                                                               | T2                 |
| Automatic reset                                      | For the 150 Series only, the self-holding output relay can be changed to automatic reset.                                                                                                                                                                                            | Н                  |

### **Shock Relay SC Series**

### **Features**

# Communication function which makes central monitoring of load in process possible

It is possible to check the condition of the Shock Relay at each process and perform setting changes remotely by using monitoring software (PCON).

### 4 to 20mA output

It is possible to check /analyze the load by performing an action adjusted to the actual load, or recording into the recorder.

### Face mount (Panel type)

Panel type face mounting is available. The display portion can be separated from main unit, and can be installed at the control box panel.

### **Under current detection**

Either alarm output or undercurrent detection output contact can be selected.

### Maintenance indicator

Set the operational time until the next maintenance, and a notification will be given when the time is reached.

### Thermal Energy (Inverse time characteristic)

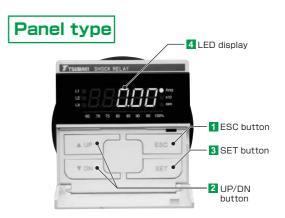
Switch to electrical thermal energy to protect the motor from burnout.

### **CE** marking

**Conformed RoHS** 



### Standard specifications


|                     | Model No.           | All-in-one type                                    |                                     | TSBSCB06                                                                                                             | TSBSCB34                                                               | TSBSCB60             |  |  |  |
|---------------------|---------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|--|--|--|
| '                   | viodel INO.         | Panel type                                         |                                     | TSBSCS06                                                                                                             | TSBSCS34                                                               | TSBSCS60             |  |  |  |
|                     |                     |                                                    | 4t                                  | 0.1kW                                                                                                                | _                                                                      | _                    |  |  |  |
|                     | 200V class          |                                                    | 2t                                  | 0.2, 0.4kW                                                                                                           | 1.5, 2.2kW                                                             | _                    |  |  |  |
| Motor               |                     | Number of wires pass                               | 1t                                  | 0.75kW                                                                                                               | 3.7, 5.5kW                                                             | 7.5, 11kW            |  |  |  |
| - ≥                 |                     | through the CT hole                                | 4t                                  | 0.2kW                                                                                                                | _                                                                      | _                    |  |  |  |
| _                   | 400V class          |                                                    | 2t                                  | 0.4, 0.75kW                                                                                                          | 2.2, 3.7, 5.5kW                                                        | _                    |  |  |  |
|                     |                     |                                                    | 1t                                  | 1.5kW                                                                                                                | 7.5, 11kW                                                              | 15, 18.5, 22kW       |  |  |  |
|                     | Frequenc            | cy of detect current                               |                                     |                                                                                                                      | 20 ~ 200Hz                                                             |                      |  |  |  |
|                     | Maximum v           | oltage of motor circuit                            |                                     |                                                                                                                      | AC690V 50/60Hz                                                         |                      |  |  |  |
|                     | Operation           | onal power source                                  |                                     |                                                                                                                      | 100 ∼ 240VAC±10%, 50/60Hz                                              |                      |  |  |  |
|                     | O                   | Number of wires pass                               | 4t                                  | 0.15 ~ 1.60A (0.01A)                                                                                                 | _                                                                      | ( ): Increment       |  |  |  |
|                     | Overcurrent setting | through the CT hole                                | 2t                                  | 0.30 ~ 3.20A (0.02A)                                                                                                 | 3.00 ~ 17.0A (0.1A)                                                    | _                    |  |  |  |
|                     | seiling             | inrough the CT hole                                | 1t                                  | 0.60 ~ 6.40A (0.04A)                                                                                                 | 6.00 ~ 34.0A (0.2A)                                                    | 10.00 ~ 60.0A (0.4A) |  |  |  |
|                     |                     | Start time                                         |                                     | 0 -                                                                                                                  | ~ 12.0s (0.2s and larger: Increment 0.                                 | .1s)                 |  |  |  |
| ا ۔ ا               |                     | Shock time                                         |                                     |                                                                                                                      | 0.2 ~ 5.0s (Increment 0.1s)                                            |                      |  |  |  |
| .፬                  | Accuracy            | Current detection accure                           |                                     | ±                                                                                                                    | 5% (In case of commercial power sourc                                  | ce)                  |  |  |  |
| 5                   | Accordcy            | Time detection accuracy                            |                                     |                                                                                                                      | ±5%                                                                    |                      |  |  |  |
| ر<br>ا<br>ا         |                     | Under current                                      |                                     |                                                                                                                      | Trip at $0.2 \sim 5s$ (OFF: No action)                                 |                      |  |  |  |
| . <u>ē</u>          |                     | ck when starting up                                |                                     | Set at 2 $\sim$ 8 times of overcurrent setting value (OFF: No action) Trip after Start time + 0.2s when starting up. |                                                                        |                      |  |  |  |
| Protection function | Loc                 | Lock when operating                                |                                     | Set at 1.5 $\sim$ 8 times of overcurrent setting value (OFF: No action), trip at 0.2 $\sim$ 5s.                      |                                                                        |                      |  |  |  |
| 은                   | Phase-reversal      |                                                    | Trip within 0.15s, (OFF: No action) |                                                                                                                      |                                                                        |                      |  |  |  |
| _                   | Phase loss          |                                                    | Trip at 0.5 ~ 5s (OFF: No action)   |                                                                                                                      |                                                                        |                      |  |  |  |
|                     | Imbalance           |                                                    |                                     | Trip at 1 $\sim$ 10s (OFF: No action) when setting at 10 $\sim$ 50%                                                  |                                                                        |                      |  |  |  |
|                     | Alarm               |                                                    |                                     | Output when A, F and H are set (OFF: No action)                                                                      |                                                                        |                      |  |  |  |
|                     |                     | Running hour                                       |                                     | Trip when 10 ∼ 9990hr is set (OFF: No action)                                                                        |                                                                        |                      |  |  |  |
|                     |                     | Fail-safe                                          |                                     | Activated when setting ON (Conducting normally: Excited, Trip: Non-excited)                                          |                                                                        |                      |  |  |  |
| >                   |                     | Rated load                                         |                                     |                                                                                                                      | $3A,250VAC (\cos \phi = 1)$                                            |                      |  |  |  |
| <u>e</u>            | Minin               | num allowable load *1                              |                                     |                                                                                                                      | DC24V, 4mA                                                             |                      |  |  |  |
| Output relay        |                     | Life                                               |                                     |                                                                                                                      | Activation 100,000times at rated load                                  |                      |  |  |  |
| 호                   | Сс                  | ontact arrangement                                 |                                     |                                                                                                                      | OC:1c,AL/UC/TO:1a                                                      |                      |  |  |  |
| o                   | Reset               | Self-holding                                       |                                     | E-r: Manual rele                                                                                                     | E-r: Manual release or reset of power source, H-r: Only manual release |                      |  |  |  |
|                     |                     | Auto-reset                                         |                                     | A-r: Auto-reset and set the return time at 0.2s ~ 20min                                                              |                                                                        |                      |  |  |  |
|                     |                     | nalog output                                       |                                     | Analog output 4 ~20mA DC Output (OFF: No action) Allowable load resistance: 100Ω and below                           |                                                                        |                      |  |  |  |
|                     |                     | nunication output                                  | .\                                  | RS485/Modbus                                                                                                         |                                                                        |                      |  |  |  |
| D:-I                | ectric strength     | nce (Between housing-circui<br>Between housing-cir |                                     | DC500V 10MQ                                                                                                          |                                                                        |                      |  |  |  |
| Diei                | voltage             | Between relay conto                                |                                     | 2000VAC 60Hz 1min.<br>1000VAC 60Hz 1min.                                                                             |                                                                        |                      |  |  |  |
| = 1                 | vollage             | Place                                              | ICIS                                | Indoor, no water splash                                                                                              |                                                                        |                      |  |  |  |
| neı                 | ۸۳                  | nbient temperature                                 |                                     |                                                                                                                      | — 20 ~+ 60 °C                                                          |                      |  |  |  |
| E I                 |                     | Ambient humidity                                   |                                     |                                                                                                                      | 30 ~ 85%RH (No dew condensation)                                       |                      |  |  |  |
| .≧                  |                     | Altitude                                           |                                     |                                                                                                                      | 2000m and below                                                        |                      |  |  |  |
| Use environment     |                     | Atmosphere                                         |                                     |                                                                                                                      | No corrosive gas, oil-mist or dust                                     |                      |  |  |  |
| Jse                 |                     | Vibration                                          |                                     |                                                                                                                      | 5.9m/s <sup>2</sup> and below                                          |                      |  |  |  |
|                     | Pow                 | er consumption                                     |                                     | 7VA and below                                                                                                        |                                                                        |                      |  |  |  |
|                     |                     | pprox. mass                                        |                                     |                                                                                                                      | 0.3kg and below                                                        |                      |  |  |  |
|                     | Approx. Illuss      |                                                    |                                     | o.org and below                                                                                                      |                                                                        |                      |  |  |  |

<sup>\*1:</sup> In case inputting the output relay contact to programmable controller (PLC) directly, input through the relay for minute current, because contact failure may happen due to minute current.



### Part name and Function

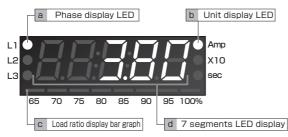


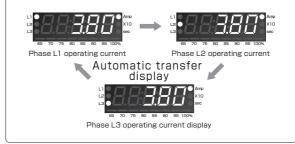


### 1 ESC button (reset)

Releases the trip or returns back to the initial setting display.

Pushing the reset button after completing parameter settings to return back to initial screen.


### 2 UP/DN button (UP/DOWN)


Switch to parameter mode and change data settings.

### 3 SET button (set)

Confirm and register parameter setting data.

### 4 LED display



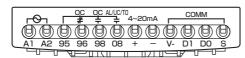


### a. Phase display LED

Displays the phase (L1(R)  $\rightarrow$  L2(S)  $\rightarrow$  L3(T)) which shows the current, changes every 2 seconds.

### b. Unit display LED

LED which Indicates the unit.


#### c. Load ratio display bar graph

Can be utilized as a guide when setting OC (Overcurrent setting value). Displays the ratio as a percentage (%); Operational load current/OC current setting value

### d. 7 segment LED

Displays operation current, parameter setting value, cause of trip, etc.

### 5 Terminal arrangement

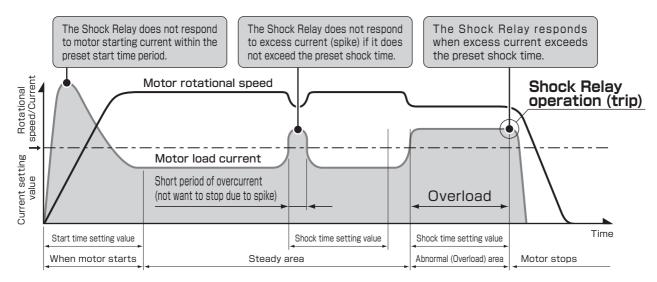


#### Applicable wire

Wire: ISO 1 to 25mm<sup>2</sup>, AWG#18 to 1475°C copper wire Strip length: 8mm

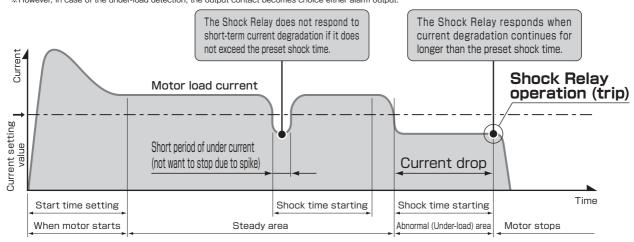
No. of connectable wires: Up to 2 for one terminal Tightening torque: 0.8 to 1.2N·m

### Digital ammeter functions

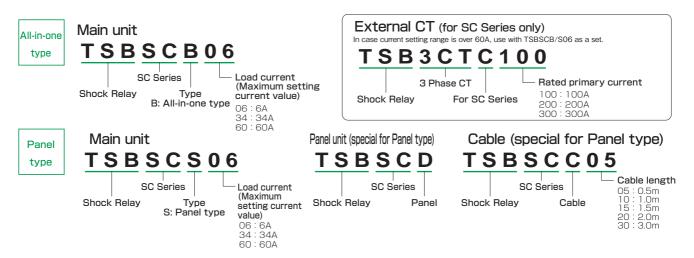

- While in normal operation, it is possible to change the displayed phase, and set it. Release by pushing the ESC button.
- 2) Trip record (3 most recent) can be viewed by pushing and holding the ESC button 5 sec. or longer. Push the UP/DN buttons to cycle through and confirm current values (cycles L1 →L2→L3→L1→...). The order of the trip record appears on a bar graph in the order of 100%, 95%, and 90% for easy confirmation. Release by pushing the ESC button.

| Terminal symbol | Function                   | Explanation                                                   |
|-----------------|----------------------------|---------------------------------------------------------------|
| A1, A2          | Operational power source   | Connect AC100 to 240V, commercial power source                |
| 95              | Common terminal            | Terminal 96, 98, 08 common                                    |
| 96              | 00                         | b contact: Normal-close, Overcurrent-open<br>(In case FS:OFF) |
| 98              | OC output                  | a contact: Normal-open, Overcurrent-close<br>(In case FS:OFF) |
| 08              | AL/TO/UL output            | Alarm output/Running hour output/Undercurrent output          |
| +               | Al                         | Out-ut DC4 t- 20 A                                            |
| _               | - Analog output            | Output analog current DC4 to 20mA                             |
| V-, D1, D0, S   | Terminal for communication | Connect when using communication function.                    |




### Operating mode

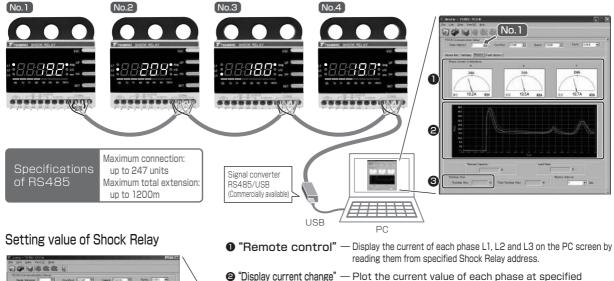
### Overload operating mode




### Light load operation (Under-load detection) mode

Once the motor current falls below the preset level, under-load is detected and a signal is sent to stop the motor. \*For under-load detection, the output contact is set to alarm output. \*However, in case of the under-load detection, the output contact becomes choice either alarm output.




### Nomenclature





### Specific function of SC Series

### Communication function





1) "Read-in setting values" Read-in the setting values from a specified Shock Relay address and display them on the PC screen.

#### Writing setting values Setting values edited on the PC can be written to a specified Shock Relay address.

3) "Back up of setting values" Setting values edited on the PC can be backed up to a text file.

### · Can be utilized for equipment maintenance such as oil filling, filter cleaning etc. Display accumulated operation time" —



#### [Trip record on last 3 times]

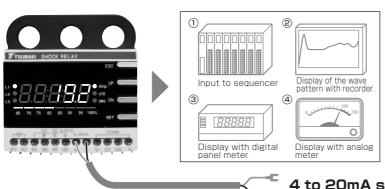
Trip record on last 3 times of Shock Relay of designed address is displayed on the screen monitor

intervals. Data for the last 159 times can be displayed.

Record of trip

② [Phase caused trouble] ④ [Setting value when trouble happened]

### 4 to 20mA analog signal


### "What is a 4 to 20mA analog signal?"

A 4 to 20 mA analog signal is a standard instrumentation signal used around the world. Instrumentation signal:

- · Voltage signal: DC 0 to 5 V, DC 0 to 10 V, etc.
- · Current signal: DC 4 to 20 mA, DC 0 to 20 mA, etc.

Current signals are less susceptible to influence from noise than voltage signals.

In addition, DC 4 to 20, when compared to DC 0 to 20 mA, is more precise in the event of wire disruption or breaks. Therefore, DC 4 to 20 mA is used frequently, specifically in the case of long transmission distances (several tens of meters) or in answer to requests for reducing noise influence...



#### <Example of application>

- ①Automatic control of the input and viscosity depending on the load by inputting the load current to the sequencer of a crusher or mixer.
- ©Figuring out the operation and loading conditions for the equipment by recording the load current of a trial unit, and using it as the basis for an optimal equipment design.
- (4) Activation of a digital and analog meter with DC 4 to 20 mA signal for remote centralized monitoring of pumps, etc.

In the case of TSBSCB60 (Max. 60A), it is possible to transmit DC 0 to 60 A as a DC 4 to 20 mA signal. In addition, output value correction is available due to the scaling adjustment function of the DC 4 to 20mA output of the TSBSC Series.

4 to 20mA signal



### Setup steps

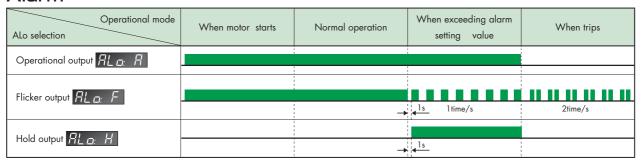
| ltem                       | Operation button | Operation instruction                                                                                                                                                                      |
|----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Selection of parameter  | UP/DN            | Select the setting parameter by pushing the UP/DN buttons.                                                                                                                                 |
| 2. Preparation for setting | SET              | The setting value begins blinking when the SET button is pushed after selecting a parameter.                                                                                               |
| 3. Selection of setting    | UP/DN            | Push the UP/DN buttons until the desired setting value is shown.                                                                                                                           |
| 4. Register of setting     | l (SFT )         | Press the SET button after selecting the setting value, the blinking value indication returns to normal and the setting value is registered.                                               |
| 5. Initial indication      | ESC )            | Push the ESC button to return to the initial indication after completing the settings. In the case that no button is pushed, returns to initial indication automatically after 50 seconds. |

### Parameter

|     |                         | Para          | meter                                                                                                                                      |                                                                                                                                                                                                                                 | The fire           |               |                                     |                    |                  |                |            |
|-----|-------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-------------------------------------|--------------------|------------------|----------------|------------|
| No. | Menu                    | Initial Value | Setting Value                                                                                                                              |                                                                                                                                                                                                                                 |                    | ь             | xplanation of fu                    | nction             |                  |                |            |
|     |                         |               | 0                                                                                                                                          | All parai                                                                                                                                                                                                                       | meter settings a   | re possible.  |                                     |                    |                  |                |            |
| 1   | Parameter lock          | oc n          |                                                                                                                                            | To lock p                                                                                                                                                                                                                       | arameter settin    | gs, input "1  | " for every parc                    | ımeter set.        |                  |                |            |
| '   | rarameter lock          |               | 1                                                                                                                                          |                                                                                                                                                                                                                                 | k the setting, in  |               | _                                   |                    | is displayed, t  | he setting is  |            |
|     | Selection of            | Ph.3Ph        | 3Ph                                                                                                                                        | Monitori                                                                                                                                                                                                                        | ng 3 phase mo      | tor           |                                     |                    |                  |                |            |
| 2   | phase No.               | רח:שרח        | 1Ph                                                                                                                                        | Monitori                                                                                                                                                                                                                        | ng single phase    | motor.        |                                     |                    |                  |                |            |
|     |                         |               | dE                                                                                                                                         | Operate                                                                                                                                                                                                                         | s with definite ti | me charact    | eristic.                            |                    |                  |                |            |
| 3   | Operation               | teedE         | th                                                                                                                                         | characte                                                                                                                                                                                                                        | ristic.            |               | cteristic and is                    | cumulative         | as in the case   | of thermal     |            |
| Ĵ   | curve                   |               | ln                                                                                                                                         | Operate<br>90.)                                                                                                                                                                                                                 | s with inverse     | time charac   | teristic. (Refer t                  | o Inverse c        | haracteristic ch | art on page    |            |
|     |                         |               | no                                                                                                                                         | Setting fo                                                                                                                                                                                                                      | or disabling the   | upper limit   | detection.                          |                    |                  |                |            |
| 4   | CT ratio                | c             | Setting the number of motor wires that pass through the CT (1t: 1time, 2t: 2 times, 4t: 4 times) Type 34; only 1t and 2t, Type 60; only 1t |                                                                                                                                                                                                                                 |                    |               |                                     |                    |                  |                |            |
|     |                         |               | 100,200,300                                                                                                                                | Select when using External CT (Type 06 only)                                                                                                                                                                                    |                    |               |                                     |                    |                  |                |            |
| _   | 5 110 (                 | <i></i>       | CC_CC                                                                                                                                      | oFF                                                                                                                                                                                                                             | Normal             | mode When     | a trip occur                        | s, the relay turns | s ON (95-96      | 5: Open, 95-98 | : Closed). |
| 5   | Fail Safe               | on            |                                                                                                                                            | Fail safe mode  After the power is turned on, the relay turns ON (95-96: Open, 95-98: Closed); and when a trip occurs, the relay turns OFF (95-96: Closed, 95-98: Open).  * This setting becomes effective after a power reset. |                    |               |                                     |                    |                  |                |            |
| 6   | Reverse phase detection | rP:oFF        | oFF<br>on                                                                                                                                  | Set to "or                                                                                                                                                                                                                      | ı" when detecting  | g phase-rever | sal.                                |                    |                  |                |            |
|     |                         |               |                                                                                                                                            | over 32                                                                                                                                                                                                                         |                    | aracteristics | t. For type 34 c<br>"th" and "In" . | and 60, the        | current value co | Unit: (A)      |            |
|     |                         |               |                                                                                                                                            | CT Ratio                                                                                                                                                                                                                        | 06 ty              | ре            | 34 ty                               | ре                 | 60 ty            | ре             |            |
|     |                         |               |                                                                                                                                            | CT Kallo                                                                                                                                                                                                                        | Setting range      | Increments    | Setting range                       | Increments         | Setting range    | Increments     |            |
|     | Over current            |               |                                                                                                                                            | 1t                                                                                                                                                                                                                              | 0.60 ~ 6.40        | 0.04          | 6.00 ~ 34.0                         | 0.2                | 10.0 ~ 60.0      | 0.4            |            |
| 7   | threshold               | oc:6.40°      | See the right                                                                                                                              | 2t                                                                                                                                                                                                                              | 0.30 ~ 3.20        | 0.02          | 3.00 ~ 17.0                         | 0.1                |                  |                |            |
|     |                         |               |                                                                                                                                            | 4t                                                                                                                                                                                                                              | 0.15 ~ 1.60        | 0.01          |                                     |                    |                  | /              |            |
|     |                         |               |                                                                                                                                            | 100                                                                                                                                                                                                                             | 12.0 ~ 128         | 1             | _                                   |                    |                  |                |            |
|     |                         |               |                                                                                                                                            | 200                                                                                                                                                                                                                             | 24.0 ~ 256         | 1             |                                     |                    |                  |                |            |
|     |                         |               |                                                                                                                                            | 300                                                                                                                                                                                                                             | 36.0 ~ 384         | 1             |                                     |                    |                  |                |            |
|     |                         |               |                                                                                                                                            |                                                                                                                                                                                                                                 |                    |               |                                     |                    |                  |                |            |



### Parameter


|     |                             | Para            | meter                | - 1                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----|-----------------------------|-----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. | Menu                        | Initial Value   | Setting Value        | Explanation of function                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 8   | Start time                  | dt: 02 <b>.</b> | 0<br>0.2 ~ 12.0s     | When setting the inverse characteristic "In", be aware that it operates in Cold characteristic from the starting of the motor until the current becomes lower than OC setting, and then operates in Hot characteristic after that.  The relay does not output within the time setting, so as to not operate when the motor starts. When inverse characteristic "In" is set, it operates in Hot characteristic after Start time. |  |
| 9   | Over current<br>Shock time  | ot: 02.         | 0.2 ~ 5.0s           | Set continuous overloading time of the overcurrent setting.                                                                                                                                                                                                                                                                                                                                                                     |  |
|     | Shock lime                  | cl5: 1.         | 1 ~ 30               | Select the operation characteristic when inverse characteristic "th", "In" are set. (Refer to Thermal and inverse characteristic charts)                                                                                                                                                                                                                                                                                        |  |
| 10  | Under current               | ⊔c:oFF°         | oFF                  | Set current value when detecting undercurrent.  This cannot be set higher than the overcurrent value. Relay output for undercurrent is as follows:                                                                                                                                                                                                                                                                              |  |
|     | inresnoid                   |                 | See the right        | Alarm ALo is set to "except uc": outputs at OC terminal Alarm ALo is set to "uc": outputs at AL/UC/TO terminals                                                                                                                                                                                                                                                                                                                 |  |
| 11  | Under current<br>Shock time | ut: 02.         | 0.2 ~ 5.0s           | Set continuous under-loading time of under-current setting.                                                                                                                                                                                                                                                                                                                                                                     |  |
| 12  | Phase loss                  | PL:oFF          | oFF<br>on            | Set to "on" in the case that phase loss is detected.                                                                                                                                                                                                                                                                                                                                                                            |  |
| 13  | Phase loss<br>time          | PLE-05.         | 0.5 ~ 5s             | Set operation time in the case that phase loss is detected.<br>When phase loss detection is set to oFF, it does not display.                                                                                                                                                                                                                                                                                                    |  |
| 7.4 | Imbalance<br>threshold      | Ub:oFF          | oFF                  | Set to 10~50% in case imbalance is detected.                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 14  |                             | uo:orr          | 10 ~ 50%             | Imbalance ratio (%) = $\frac{\text{(Max.Current-Min.Current)}}{\text{Max.Current}} \times 100$                                                                                                                                                                                                                                                                                                                                  |  |
| 15  | Imbalance<br>duration       | UbE: 1          | 1 ~ 10s              | Set operation time in the case that an imbalance is detected. When imbalance detection is set to oFF, this does not display.                                                                                                                                                                                                                                                                                                    |  |
| 16  | Stall threshold             | Sc:oFF          | oFF 2 ~ 8 times      | Set the ratio against overcurrent setting in the case of detecting the lock when starting. Setting range; Sc setting value $\times$ OC $\leq$ 250A. This parameter is not displayed when the start time is set to 0s.                                                                                                                                                                                                           |  |
| 17  | Jam threshold               | JR:oFF          | oFF<br>1.5 ∼ 8 times | Set the ratio against overcurrent setting in the case of detecting the lock when running. Setting range; JA setting value $\times$ OC $\leq$ 250A.                                                                                                                                                                                                                                                                              |  |
| 18  | Jam fault duration          | JE: 02.         | 0.2 ~ 5s             | Set the operating time in the case of detecting the lock when running. When lock JA is set to oFF, it does not display.                                                                                                                                                                                                                                                                                                         |  |
| 19  | Analog Output               | r 5:5.40°       | See the right        | Set the current value as analog current output scale for 20mA output. Refer to page 87 Current setting chart for setting range.                                                                                                                                                                                                                                                                                                 |  |
|     | 7 3 1 3 2                   |                 | oFF                  | Set when disabling analog current output.                                                                                                                                                                                                                                                                                                                                                                                       |  |
|     |                             |                 | no                   | Set when disabling alarm output.                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 20  | Alert                       | RLana           | A<br>F<br>H          | Set when enabling alarm output. Refer to the table on page 89.                                                                                                                                                                                                                                                                                                                                                                  |  |
| 20  | Alen                        |                 | to                   | Set to trigger an output when the running hour is set.                                                                                                                                                                                                                                                                                                                                                                          |  |
|     |                             |                 | UC                   | Set in the case of detecting under-load.                                                                                                                                                                                                                                                                                                                                                                                        |  |
|     |                             | RL:oFF          | oFF<br>50 ~ 100%     | Set the ratio against the OC current when alarm outputting.                                                                                                                                                                                                                                                                                                                                                                     |  |

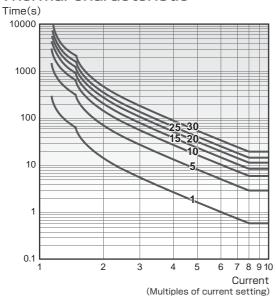


### Parameter

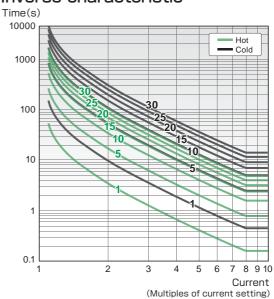
| No.  | Menu                  | Parameter               |                     | Explanation of function                                                                                                             |  |
|------|-----------------------|-------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| 140. | Menu                  | Initial Value           | Setting Value       | Explanation of function                                                                                                             |  |
|      |                       |                         | E-r                 | Self-holding after trip, back in when power is reset or ESC button is pushed.                                                       |  |
| 21   | Reset                 | r <u>E:E-</u>           | H-r                 | Self-holding after trip, back in when ESC button is pushed.                                                                         |  |
| 21   | Kesei                 |                         | A-r                 | Automatic reset after tripping.                                                                                                     |  |
|      |                       | Ar: 05.                 | 0.2s ~ 20min        | Set automatic reset time                                                                                                            |  |
| 22   | Reset limitation      | r n:oFF                 | oFF                 | There is no limit to the number of resets                                                                                           |  |
| 22   | kesei iiiiiidiidii    | , , (: <u>, ,</u> , , , | $1\sim5$ times      | Set the number of reset operations (within 30 minutes).                                                                             |  |
| 23   | Total running<br>hour | -Erh-                   |                     | Display total running hours                                                                                                         |  |
| 24   | Running hour          | h-                      |                     | Display operational time since inputting running hours setting time.                                                                |  |
| 25   | Running hour setting  | rhoFF                   | oFF<br>10 ~ 99990hr | To output the running hours, set the number of hours. The running hours will be counted from the point when the input is completed. |  |
|      |                       | Rd: I                   | 1 ~ 247             | Set the communication address                                                                                                       |  |
| 26   | Communication         | 6P: 19.2                | See the right       | Set the communication speed 1.2, 2.4, 4.8, 9.6, 19.2, 38.4kbps                                                                      |  |
| 20   | setting               | PrEun                   | odd, Evn, non       | Set the parity                                                                                                                      |  |
|      |                       | LE:oFF                  | oFF, 1 ~ 999s       | Set the waiting time until an error is displayed when there is communication trouble.                                               |  |
| 27   | Test mode             | EE5E                    |                     | In the case that the set button is pushed when this is displayed, after 3 sec. + Shock Time, Find is shown and relay is output.     |  |

### **Alarm**




### Trip display

| Trip function                         | Indication         | Contents of trip                                                                                                                                                  | Solution                                       |
|---------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Over current                          | °ac: 3.5°          | After the preset Start time period, the current exceeds the upper setting value and continues to flow longer than the preset Shock time. Trip current is 3.6A.    | Check the abnormality of machine               |
| Phase loss                            | •PL                | Trip due to phase loss of R(L1) phase                                                                                                                             | Check the abnormality of machine               |
| Phase reversal                        | -,-P-              | Trip due to phase reversal                                                                                                                                        | Check phase sequence with phase sequence meter |
| Stall (Lock when starting)            | •5 <i>c:35.</i> 0° | When the motor starts, the current exceeds Sc setting value and continues to flow longer than the preset Start time.                                              | Check the abnormality of machine               |
| Jam (Lock when operating)             | .1R: 15.8°         | When motor is operating, the current exceeds Ja setting value and continues to flow longer than Jt setting time.                                                  | Check the abnormality of machine               |
| Imbalance                             | .Ub: 42°           | Current of each phase becomes imbalanced larger than the Ub setting value, and continues to remain imbalanced longer than the Ubt setting time.                   | Check the power source, motor and motor wiring |
| Under current                         | •uc: (6°           | After the preset Start time period, the current under-runs the lower setting value and continues to flow longer than the preset Shock time. Trip current is 1.6A. | Check the abnormality of machine               |
| Limitation of the number of autoreset | rnFuL              | Number of auto-resets after trip exceeds the setting value within 30 minutes.                                                                                     | Check the abnormality of machine               |




### Inverse time characteristic charts

### Thermal characteristic



### Inverse characteristic



### Number of motor wires that pass through the CT (current transformer) hole

Refer to the table below for the number of motor wires that pass through the CT.

The values in this table are just a guide for when the motor is used at load ratio of 80 to 100%. In case that motor load ratio is low, increase the number of motor wires to pass through to improve the setting accuracy.

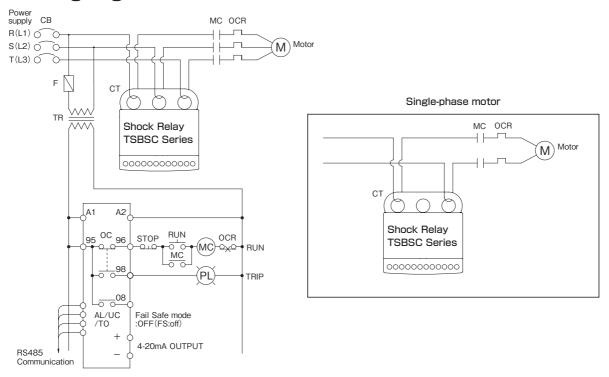
In addition, in case of motors not in the table below (Small size, single phase, different voltage, etc.), select and set an appropriate Model and number of motor wires that pass through the CT based on the setting current values.

|      | 3 phase AC 200V class motor      |                                                |  |  |  |  |  |
|------|----------------------------------|------------------------------------------------|--|--|--|--|--|
| kW   | Applicable Shock Relay Model No. | Number of motor wires that pass through the CT |  |  |  |  |  |
| 0.1  | TSBSCB/S06                       | 4                                              |  |  |  |  |  |
| 0.2  | TSBSCB/S06                       | 2                                              |  |  |  |  |  |
| 0.4  | TSBSCB/S06                       | 2                                              |  |  |  |  |  |
| 0.75 | TSBSCB/S06                       | 1                                              |  |  |  |  |  |
| 1.5  | TSBSCB/S34                       | 2                                              |  |  |  |  |  |
| 2.2  | TSBSCB/S34                       | 2                                              |  |  |  |  |  |
| 3.7  | TSBSCB/S34                       | 1                                              |  |  |  |  |  |
| 5.5  | TSBSCB/S34                       | 1                                              |  |  |  |  |  |
| 7.5  | TSBSCB/S60                       | 1                                              |  |  |  |  |  |
| 11   | TSBSCB/S60                       | 1                                              |  |  |  |  |  |
| _    | _                                | _                                              |  |  |  |  |  |
| _    | _                                | _                                              |  |  |  |  |  |
| _    | _                                | _                                              |  |  |  |  |  |

| 3 phase AC 400V class motor |                                  |                                                |  |  |  |  |
|-----------------------------|----------------------------------|------------------------------------------------|--|--|--|--|
| kW                          | Applicable Shock Relay Model No. | Number of motor wires that pass through the CT |  |  |  |  |
| _                           | -                                | _                                              |  |  |  |  |
| 0.2                         | TSBSCB/S06                       | 4                                              |  |  |  |  |
| 0.4                         | TSBSCB/S06                       | 2                                              |  |  |  |  |
| 0.75                        | TSBSCB/S06                       | 2                                              |  |  |  |  |
| 1.5                         | TSBSCB/S06                       | 1                                              |  |  |  |  |
| 2.2                         | TSBSCB/S34                       | 2                                              |  |  |  |  |
| 3.7                         | TSBSCB/S34                       | 2                                              |  |  |  |  |
| 5.5                         | TSBSCB/S34                       | 2                                              |  |  |  |  |
| 7.5                         | TSBSCB/S34                       | 1                                              |  |  |  |  |
| 11                          | TSBSCB/S34                       | 1                                              |  |  |  |  |
| 15                          | TSBSCB/S60                       | 1                                              |  |  |  |  |
| 18.5                        | TSBSCB/S60                       | 1                                              |  |  |  |  |
| 22                          | TSBSCB/S60                       | 1                                              |  |  |  |  |

Note 1) Set the parameter "CT ratio" based on the number of motor wires that pass through the CT.

### Specification of External CT


|          | Mode                           | el No.       | TSB3CTC100 | TSB3CTC200 | TSB3CTC300 |  |  |
|----------|--------------------------------|--------------|------------|------------|------------|--|--|
| _        | Class                          |              |            | Grade 3    |            |  |  |
| CT       | Rated prim                     | nary current | 100A       | 200A       | 300A       |  |  |
| rna      | Rated secondary current        |              |            | 5A         |            |  |  |
| External | Rated burden                   |              | 5VA        |            |            |  |  |
| ш        | Rated frequency Approx. mass   |              | 50/60Hz    |            |            |  |  |
|          |                                |              | 0.9kg      |            |            |  |  |
| ref.     | Applicable main unit model No. |              |            | TSBSCB/S06 |            |  |  |
| 0r re    | Adapted                        | 200V class   | 15~18.5kW  | 22~37kW    | 45~75kW    |  |  |
| Й        | motor                          | 400V class   | 30~45kW    | 55~90kW    | 110~132kW  |  |  |

<sup>2)</sup> In case that the motor kW exceeds the above table, use external CT.



### Wiring diagram

### Basic wiring diagram



- Note) 1. If necessary, set transformer (Tr) depending on the voltage on the Shock Relay and electromagnetic contactor (MC). Install an isolating transformer if there is any harmonic noise generating device, such as an inverter.
  - 2. Output relay; Normal condition: not excited, Trip condition: excited
  - 3. Coil capacity of MC connected with output relay of Shock Relay is;

Throw: less than 200VA, Hold: less than 20VA

As a guide, in case of TSBSCB60/TSBSCS60, set auxiliary relay, and activate auxiliary relay with output relay of the Shock Relay, and open/close MC with the contactor of the auxiliary relay.


### Communication function

### Communication specification

| ltem                        | Content                                |
|-----------------------------|----------------------------------------|
| Transmittance Standards     | RS-485                                 |
| Max. transmittance distance | 1200m (Depends on transmittance speed) |
| Transmittance system        | Half-duplex system Protocol: modbus    |
| Transmittance speed         | 1.2k to 38.4kbps                       |

### Connection with signal converter

- 1) Prepare a signal converter to use the monitoring software (PCON) of TSBSC.
- 2) Use twist cables and connect as follows.



| Terminal | Signal   | RS485 Terminal |  |
|----------|----------|----------------|--|
| V-       | GND      | GND            |  |
| D1       | Data (B) | Tx+            |  |
| D0       | Data (A) | Tx-            |  |
| S        | Shield   | Shield         |  |



### Communication function

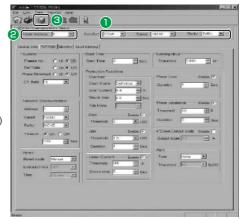
### Monitoring software (PCON)

Monitoring software for PC is available.

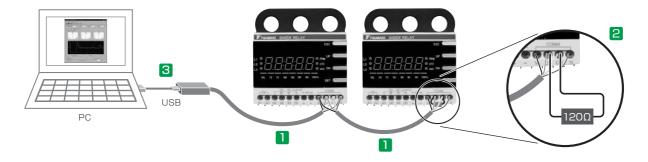
It is possible to communicate between PC and Shock Relay through a signal converter (RS485/USB; commercially available).

#### Main function

The following can be performed on the PC screen;


- ♦ setting of the parameters for the Shock Relay
- monitoring of the changes in the motor current
- confirmation of the trip record

### Things to prepare


- ① RS485/USB signal converter (commercially available)
- ② USB cable (commercially available; which fits the size of slot of ①)
- 3 Twist pair cable with shield (commercially available)
- 4 Terminating resistor (120 $\Omega$ , 1/4W and larger)
- ⑤ Special monitoring software "TSBSC PCON" CD-ROM
- \* For 4 and 5, contact TEM.2

### Connection method

- I Connect the terminal V-, D1, D0 and S with the cable.
- ${\bf 2}$  Connect the terminating resistor  $120\Omega$  between terminating terminal D1 and D0.
- 3 Connect the PC and the signal converter with a USB cable.



- Communication setting at PCON side
- Selection of the other communication party
- Starting of the communication



### Setting the address of the main unit

Set the address and the communication method to each Shock Relay main unit in advance, before starting communication. Set the following item by calling up parameter 26 communications setting.

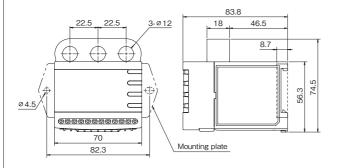
Address (1 to 247), Communication speed (1.2 to 38.4kbps), Parity (EVEN, ODD, non), Communication loss time (off, 1 to 999s)

### Setting of the special software "TSBSC PCON"

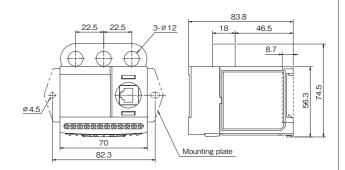
First, install the special monitoring software and signal converter software to the PC.

- 1 When the desktop icon is clicked, the software is activated, and the PCON operating display appears on screen. Set the communication settings for the PCON side to be the same as the communication method for the Shock Relay main unit.
- 2 In addition, select the PC port number in which the USB cable is connected, as [ComPort].
- 3 Select the address of the Shock Relay of the other communication party.
- 4 Click the link icon to begin communication.

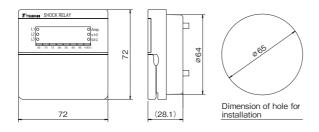
\*In the case that communication with a PLC (sequencer) is necessary without using PC monitoring software, consult TEM.


### Getting method of the monitoring software (PCON)

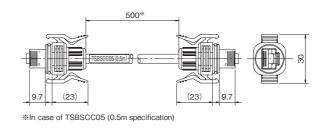
Consult TEM.



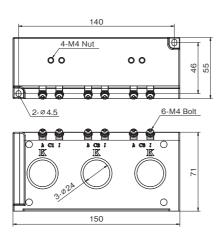

### Outline drawing


# ALL-in-one type main unit TSBSCB06, TSBSCB34, TSBSCB60




# Panel type main unit TSBSCS06, TSBSCS34, TSBSCS60




# Panel unit (special for Panel type) TSBSCD



# Cable (special for Panel type) TSBSCC05, TSBSCC10, TSBSCC15, TSBSCC20, TSBSCC30



# External CT TSB3CTC100, TSB3CTC300



# Shock Relay ED Series

### **Features**

Displays both the motor current and each setting value digitally

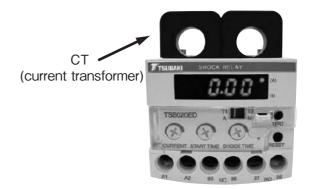
**Economically priced** 

CT included in one compact unit

Works with inverter\*

Current can be precisely detected when inverter is operating between 20 - 200Hz.

Choose between self-holding output relay and automatic reset


**CE** marking

**UL** · cUL certification

\*\*To prevent an unnecessary trip due to an increase of amperage when accelerating and decelerating, slowly accelerate and decelerate or allow some leeway for set current.

**CCC** certification

### CT all-in-one model

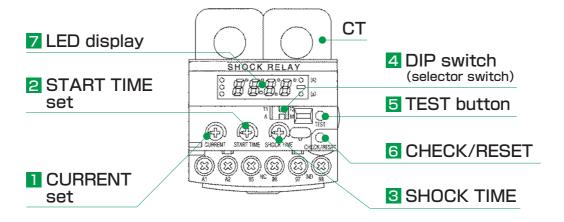


TSB020ED-1 TSB220ED-1 TSB020ED-2 TSB220ED-2 TSB075ED-1 TSB550ED-1 TSB075ED-2 TSB550ED-2

### Standard Specifications

| Model                |                          | 1.1          | Control power supply voltage 1                            | 00~120V | TSB020ED-1                                                                                                   | TSB075ED-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TSB220ED-1         | TSB550ED-1            |  |  |  |  |
|----------------------|--------------------------|--------------|-----------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--|--|--|--|
|                      | Mo                       | aei          | Control power supply voltage 2                            | 00~240V | TSB020ED-2                                                                                                   | TSB075ED-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TSB220ED-2         | TSB550ED-2            |  |  |  |  |
|                      |                          | 200V         | No. of wires that pass through the CT hole, DIP switch**4 | T2      | 0.1kW                                                                                                        | 0.4kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5kW              | 3.7kW                 |  |  |  |  |
|                      | Applicab                 |              | the CT hole, DIP switch*4°                                | T1      | 0.2kW                                                                                                        | 0.75kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2kW              | 5.5kW                 |  |  |  |  |
| 호                    | motors<br>*1             | 400V         | No. of wires that pass through                            | T2      | 0.1, 0.2kW                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2, 3.7kW         | 7.5kW                 |  |  |  |  |
| Motor                | class                    |              | the CT hole, DIP switch*4°                                | T1      | 0.4, 0.75kW                                                                                                  | 1.5kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5kW              | 11kW                  |  |  |  |  |
|                      |                          | Frequenc     | cy of motor current                                       |         |                                                                                                              | 20~200Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                       |  |  |  |  |
|                      |                          | Maximum      | motor circuit voltage                                     |         | AC600V 50/60Hz                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
| 0                    |                          |              | 1                                                         |         |                                                                                                              | 100~120VAC±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±10%, 50/60Hz      |                       |  |  |  |  |
| O                    | beraiing p               | ower supply  | 2                                                         |         |                                                                                                              | 200~240VAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ±10%, 50/60Hz      |                       |  |  |  |  |
|                      |                          |              | No. of wires that                                         | T2      | 0.20~1.20A                                                                                                   | 1.20~3.20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00~10.0A         | 6.00~26.0A            |  |  |  |  |
|                      |                          | rent setting | pass through                                              | 12      | (0.01A increments)                                                                                           | (0.02A increments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.1A increments)  | (0.2A increments)     |  |  |  |  |
| ions                 | <u>  00</u>              | range<br>*3  | the CT hole,                                              | T1      | 0.40~2.40A                                                                                                   | 1.80~5.80A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.00~14.0A         | 9.00~34.0A            |  |  |  |  |
| unct                 | Overload                 |              | DIP switch                                                | 11      | (0.02A increments)                                                                                           | (0.04A increments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.1A increments)  | (0.25A increments)**2 |  |  |  |  |
| Protection functions | Start time <sup>*3</sup> |              |                                                           |         | 0.2~10.0s (0.2s increments)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
| tecti                |                          |              | Shock time <sup>*3</sup>                                  |         | 0.2~5.0s (0.2s increments)                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
| Pro                  | Accuracy                 | Curren       | t detection accuracy                                      |         | $\pm 5\% \pm 1$ digit or less (except, when combined with the inverter, $\pm 10\% \pm 1$ digit or less)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
|                      |                          |              |                                                           |         | ±5% ±1 digit or less                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
|                      |                          |              | sed rotor start                                           |         | It will trip if the set current value exceeds 200% when starting, after the set start time +0.2s has elapsed |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
|                      |                          |              | Rated load                                                |         | 3A, 250VAC ( $\cos \phi = 1$ )                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
| >                    |                          |              | m allowable load                                          |         | DC24V, 4mA                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                       |  |  |  |  |
| Output relay         |                          |              | Life span                                                 |         |                                                                                                              | 100,000 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                       |  |  |  |  |
| pot                  |                          | Conto        | act constitution                                          |         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1b                 |                       |  |  |  |  |
| Õ                    |                          | (            | Operation                                                 |         |                                                                                                              | ation/normal operation: no e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                  |                       |  |  |  |  |
|                      |                          | Reset        | Trip reset,<br>DIP switch                                 | Α       | After r                                                                                                      | resetting to normal current val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | lly reset             |  |  |  |  |
| 5                    |                          |              |                                                           | М       |                                                                                                              | Can be manually reset by p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                       |  |  |  |  |
| Insulation           |                          |              | case and circuit                                          |         |                                                                                                              | DC500\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                  |                       |  |  |  |  |
| Withstand voltage    |                          |              | case and circuit                                          |         |                                                                                                              | 2000VAC 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                       |  |  |  |  |
| <u></u>              |                          | Relay co     | ontact electrodes                                         |         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz: 1 minute       |                       |  |  |  |  |
| umen                 |                          |              | Location                                                  |         |                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t will not get wet |                       |  |  |  |  |
| nviro                |                          |              | ent temperature                                           |         |                                                                                                              | -20~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |  |  |  |  |
| Work environment     |                          | Amk          | pient humidity                                            |         |                                                                                                              | 30~85%RH (no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  |                       |  |  |  |  |
| >                    |                          |              | Altitude                                                  |         |                                                                                                              | 2000m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                       |  |  |  |  |
|                      |                          | Powe         | er consumption                                            |         |                                                                                                              | 2.0W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                       |  |  |  |  |
|                      |                          |              | Mass                                                      |         |                                                                                                              | 0.25kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or less            |                       |  |  |  |  |
|                      |                          |              |                                                           |         |                                                                                                              | and the second s |                    |                       |  |  |  |  |

<sup>\*1.</sup> The applicable motors are just a rough indication for reference. Make your selection based upon actual electrical current value.
Select by electrical current value for single phase meters as well.


Select by electrical current value for single-phase motors as well. \*2. Set values 10A and higher are displayed as described on the right due to a maximum number of display digits. 10.0A → 10.2A → 10.5A → 10.7A → 11.0A

<sup>%3</sup>. A  $\pm 1$  digit error can occur with the current and the set time in the range indicated.

<sup>\*4.</sup> Be sure to make one turn when selecting T1 and two turns when selecting T2.



### Part Names and Functions



### Current Setting (CURRENT)

Sets current at the value at which trip occurs.

2 Start Time Setting (START TIME)

Sets start time (start compensating time). When the motor starts, there is a possibility that the motor current will exceed the set current value, but during the start time period it will not trip.

Shock Time Setting (SHOCK TIME)

Sets shock time (output delay time). When the motor current exceeds the set current value the count begins, and when shock time has elapsed, it will trip.

### 4 DIP Switch (selector switch)

| Setting                                           | Purpose                           |    |                                                                                                                          |    |                                                                                    |
|---------------------------------------------------|-----------------------------------|----|--------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------|
| No. of motor leads that pass through the CT T1/T2 | Current value set range selection | T1 | No. of passes through the CT:1                                                                                           | T2 | No. of passes through the CT:2                                                     |
| Trip reset<br>A / M                               | Output relay reset selection      | А  | It automatically returns from the trip state<br>1 second after current value returns<br>below the current setting value. | М  | Trip state is maintained until the check/ reset button is pressed. It then resets. |

### 5 TEST Button (TEST)

When the LED displays current value, pressing the TEST button will carry out an operation test.

### 6 CHECK/RESET Button (CHECK/RESET)

[During normal operation]

By pressing the CHECK/RESET button when the LED displays current value, it switches to the setting screen.

[During trip]

When the CHECK/RESET button is pressed, trip is cleared and the display switches to the current value. [During set-up]

When the LED display is at the setting screen, pressing the CHECK/RESET button will switch between the current, start time, and shock time settings, in this order.

### Z LED Display

Current value and set current are displayed when (A) is indicated on the display screen (to the left of the A). (A = ampere)



Start time and shock time set up are displayed when (s) is indicated on the display screen (to the left of the s). (s = second)



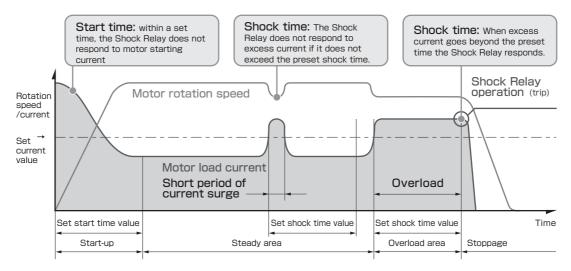


### Shock Relay

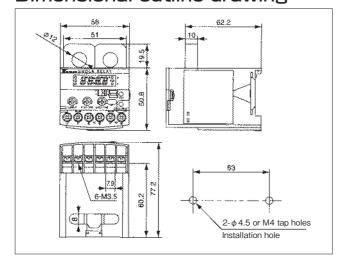
The ED Series has the following features,

which the Meter Relay (analog type) does not include:

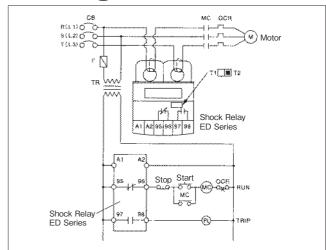
- Start time (starting compensation) function
- Shock time (output delay) function
- Compact design, includes CT
- Works with inverter driving
- Choose between self-holding output relay and automatic resetting
- Includes test function
- Detection of locked rotor start



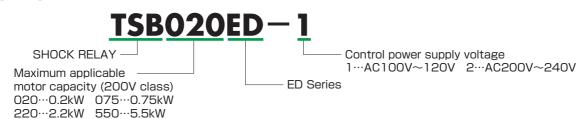




**ED Series** 

Meter Relay (analog type)


### **Operation Mode**

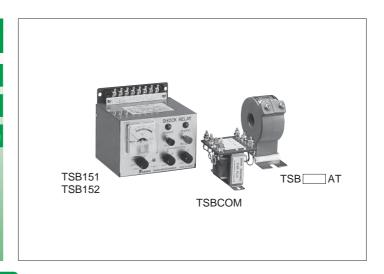



### Dimensional outline drawing



### Basic diagram




### Model No.



# Shock Relay 150 Series

### **Features**

- 1. Analog meter
- 2. Self-holding type
- 3. Special MTO models and additional specifications are available



# **Standard Specifications**

| Fu        | nction                   | Model                           | TSB151-COM                                        | TSB152, TSBAT*2                       |  |  |  |
|-----------|--------------------------|---------------------------------|---------------------------------------------------|---------------------------------------|--|--|--|
|           |                          | 200V class                      | 0.2~3.7kW*1                                       | 5.5~90kW                              |  |  |  |
|           | Motor                    | 400V class                      | 0.2~3.7kW                                         | 5.5~90kW                              |  |  |  |
| no        |                          | Ambient temperature             | −10°C~50°C                                        |                                       |  |  |  |
| Common    |                          | Relative humidity               | 45~85% RH; there is no condensation               |                                       |  |  |  |
| Ö         | Work environment         | Vibration                       | Less than 5.9m/s <sup>2</sup>                     |                                       |  |  |  |
|           |                          | Height                          | Less than 1000m                                   |                                       |  |  |  |
|           |                          | Ambient atmosphere              | No corrosiv                                       | ve gas, dust                          |  |  |  |
|           | Main                     | unit model                      | TSB151                                            | TSB152                                |  |  |  |
|           | Load current             | (current range) <sup>**4</sup>  | 30~130% (100%=5mA)                                | 30~130% (100%=5A)                     |  |  |  |
|           | Current ac               | ccuracy setting                 | ±10% (f                                           | ull-scale)                            |  |  |  |
|           | Time setting range       | Start time**4                   | 0.2~                                              | ~20s                                  |  |  |  |
|           | Time sening range        | Shock time**4                   | 0.2                                               | ~3s                                   |  |  |  |
|           | Control power            | er supply voltage               | AC100/110V or AC200                               | 0/220V 50/60Hz ±10%                   |  |  |  |
|           |                          | r circuit voltage               | AC600V, 50/60Hz                                   |                                       |  |  |  |
|           | Current detecting system |                                 | 1 phase CT system                                 |                                       |  |  |  |
|           |                          | Self-holding                    | Self-holding available                            |                                       |  |  |  |
| Main Unit | _                        | Normal state                    | Output relay o                                    | <u> </u>                              |  |  |  |
| ai.       | Output relay             | Abnormal case                   | Output relay energization                         |                                       |  |  |  |
| Ž         |                          | Contact rating                  | 1c contact, AC250V 0.2A (inductive load cos∮=0.4) |                                       |  |  |  |
|           |                          | Minimum applicable load*3       | DC24\                                             | •                                     |  |  |  |
|           | Output relay life-span   | Mechanical                      | 10,000,0                                          |                                       |  |  |  |
|           | . , ,                    | Electric                        | 100,00                                            |                                       |  |  |  |
|           | Test                     | function                        | Inclu                                             |                                       |  |  |  |
|           |                          | Gap between circuit and housing | AC1500V, 60Hz, 1 minute (powe                     |                                       |  |  |  |
|           | Withstand voltage        | Contact gap                     | AC700V, 60                                        |                                       |  |  |  |
|           |                          | Circuit gap                     | AC1500V, 60Hz, 1 minute (powe                     |                                       |  |  |  |
|           | <u></u>                  | Mass                            | 1.0kg                                             | 1.2kg                                 |  |  |  |
|           |                          | med power                       | 1.2                                               |                                       |  |  |  |
|           | External acc             | essory CT model                 | TSB COM                                           | TSB AT( ···Rated input current value) |  |  |  |
| C         | Rated in                 | nput current                    | 0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A, 4.0A,       | 100A, 120A, 150A,                     |  |  |  |
| External  |                          | ·                               | 5.3A, 7.0A, 9.0A, 10.0A, 16.0A                    | 200A, 250A, 300A                      |  |  |  |
| xte       |                          | utput current                   | 5mA                                               | 5A                                    |  |  |  |
|           |                          | ed load                         | 0.5VA                                             | 5VA                                   |  |  |  |
|           | I TODOOM A               | Mass                            | 0.5kg                                             | 0.6kg                                 |  |  |  |

Notes: #1. If the TSBCOM-A (small capacity type CT) is used, it is possible to use a less than 0.1kW motor. #2. TSB152 and TSB \_\_\_\_\_ AT (CT) have different model numbers.

<sup>\*3.</sup> When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.

\*4. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

*SAFCON* 

### Part Names and Functions

#### % Display Meter

The meter displays the percentage of the motor rated current vs. the motor current in operation. (The rated current here is based upon the Motor Rated Current CT selection table on page 100.)

#### LOAD CURRENT volume

Can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

### % Adjust Volume

If the input from CT is 5mA (TSB151) or 5A (TSB152), the meter can be modified in the  $95\sim130\%$  range. Also, after adjusting the % adjuster, the meter scale indicator and load current set scale are the same.

#### START TIME volume

When the motor starts there is a possibility that the motor current will exceed the set current value.

To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

#### **Terminal**

The terminal is located on the upper portion of the Shock Relay, making wiring easy.

#### POWER indicator

The POWER indicator lights when Shock Relay is turned on.

### Activation (SHOCK) indicator

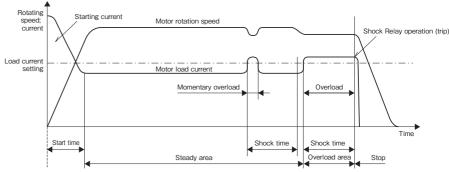
The activation (SHOCK) indicator lights when the Shock Relay operates.

#### TEST button

Shock Relay operation can be tested stand-alone or during motor operation.

(When testing the Shock Relay, continue to press and hold the TEST button) longer than the set START TIME or SHOCK TIME, whichever is longer.

#### RESET button


After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

### SHOCK TIME volume

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

### Operating mode

### Overload operating mode



Terminal

2222222

% Display meter

Load current setting

of motor rated current.

Setting range is 30~130%

Power

SHOCK RELAY

% Volume adjuster

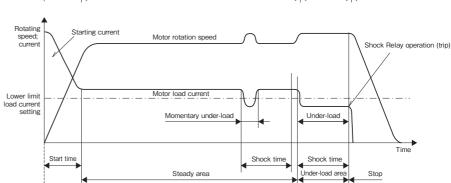
Indicator lamp

Test

Reset

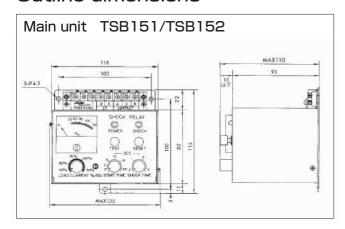
Shock time setting

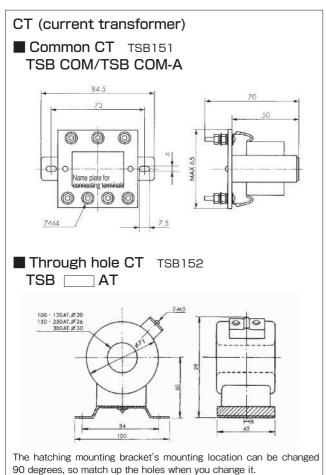
Start time setting


0.2~3s range

0.2~20s range

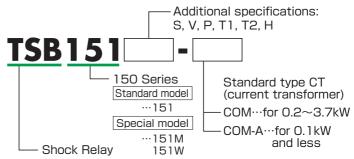
#### ■ Light-load operating mode TSB151W, 152W


(Lower/upper limit detector specifications)

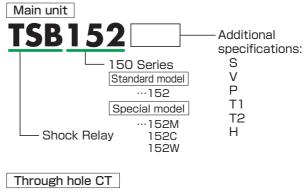

Note: Because there is only one output relay, it is not possible to distinguish between overload operation and light-load operation.






### **Outline dimensions**






### Model No.

■ Motor for 3.7kW and less



■ Motor for more than 5.5kW





### Standard model and special model additional specifications chart

| Additional specifications                                 |           | Subtropical spec. | Subtropical spec. Control power supply voltage modification Panel mounting Start time modification Shock time mod |   | Shock time modification | Auto-reset |   |
|-----------------------------------------------------------|-----------|-------------------|-------------------------------------------------------------------------------------------------------------------|---|-------------------------|------------|---|
| Model                                                     | Model     |                   | V                                                                                                                 | Р | T1                      | T2         | Н |
| Standard                                                  | 151/152   | 0                 | 0                                                                                                                 | 0 | 0                       | 0          | 0 |
| Impact load detection                                     | 151M/152M | 0                 | 0                                                                                                                 | 0 | 0                       | 0          | 0 |
| 1A input<br>(motor capacity is not necessary to consider) | 152C      | 0                 | 0                                                                                                                 | 0 | 0                       | 0          | 0 |
| Upper/lower                                               | 151W      | 0                 | 0                                                                                                                 | 0 | 0                       | 0          | 0 |
| limit detection                                           | 152W      | 0                 | 0                                                                                                                 | 0 | 0                       | 0          | 0 |

Notes: 1. Refer to page 82 for detailed specifications

- 2. For additional specifications V, specify operation power source
- 3. For additional specifications T1 and T2, indicate the start time and shock time modification time

: Multiple specifications available

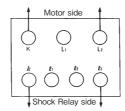
150 Series



### CT (current transformer)

### ■ Common CT: for motors up to and including 3.7kw

- $\cdot$  TSB COM (standard type) can be used with 0.2  $\sim$  3.7kW
- · TSB COM-A (small capacity type) can be used with motors up to and including 0.1kW.


### ■ TSB COM (standard type)

|                | Power su    | pply: AC20                  | 0/ 220V    | Power supply: AC400/ 440V |                     |                  |  |
|----------------|-------------|-----------------------------|------------|---------------------------|---------------------|------------------|--|
| Motors<br>(kW) | Motor rated | Connectin                   | g terminal | Motor rated               | Connecting terminal |                  |  |
| (KVV)          | current (A) | Motor side Shock Relay side |            | current (A)               | Motor side          | Shock Relay side |  |
| 0.2            | 1.75        | K-L <sub>2</sub>            | k-b        | 0.75                      | K-L <sub>2</sub>    | l-l2             |  |
| 0.4            | 2.5         | K-L <sub>2</sub>            | k-li       | 1.5                       | K-L <sub>2</sub>    | b-b              |  |
| 0.75           | 4.0         | K-L <sub>2</sub>            | k-&        | 2.0                       | $L_1$ - $L_2$       | b-b              |  |
| 1.5            | 7.0         | K-L <sub>1</sub>            | k-b        | 3.3                       | L1-L2               | k-6              |  |
| 2.2            | 10.0        | K-L <sub>1</sub>            | k-6        | 5.3                       | L1-L2               | k-ls             |  |
| 3.7            | 16.0        | K-L <sub>1</sub>            | k-ls       | 9.0                       | K-L <sub>1</sub>    | l-l:             |  |

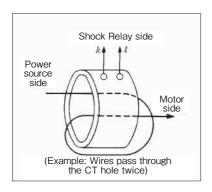
Note: Common type CT, motor side L1-L2; Shock Relay side  $\,\ell 1$ - $\,\ell 2$  combination, 1A output CT can be combined

### ■ TSB COM-A (small capacity type)

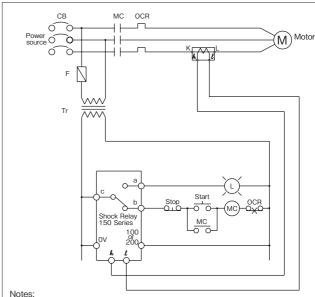
| Motor rated | Connecting terminal |                     |  |  |  |
|-------------|---------------------|---------------------|--|--|--|
| current (A) | Motor side          | Shock<br>Relay side |  |  |  |
| 0.15        | K-L <sub>2</sub>    | k-€                 |  |  |  |
| 0.25        | K-L <sub>2</sub>    | k-6                 |  |  |  |
| 0.4         | K-L <sub>2</sub>    | k-€                 |  |  |  |
| 0.6         | K-L <sub>1</sub>    | k-€                 |  |  |  |
| 1.0         | K-L <sub>1</sub>    | k-6                 |  |  |  |
| 1.6         | K-L <sub>1</sub>    | k-€                 |  |  |  |



Note: Select by current value


### ■ Through-type CT for motors 5.5kW and above

· Select a CT size applicable to motor capacity.


|               | Power su                | pply: AC20 | 0/ 220V                                                 | Power su                | pply: AC40 | 0/ 440V                                                 |
|---------------|-------------------------|------------|---------------------------------------------------------|-------------------------|------------|---------------------------------------------------------|
| Motor<br>(kW) | Motor rated current (A) | CT size    | Number of wires<br>that pass through<br>the CT hole (T) | Motor rated current (A) | CT size    | Number of wires<br>that pass through<br>the CT hole (T) |
| 5.5           | 25                      | 100AT      | 4                                                       | 14                      | 100AT      | 7                                                       |
| 7.5           | 30                      | 120AT      | 4                                                       | 20                      | 100AT      | 5                                                       |
| 11            | 50                      | 100AT      | 2                                                       | 25                      | 100AT      | 4                                                       |
| 15            | 60                      | 120AT      | 2                                                       | 30                      | 120AT      | 4                                                       |
| 19            | 75                      | 150AT      | 2                                                       | 37                      | 150AT      | 4                                                       |
| 22            | 100                     | 100AT      | 1                                                       | 50                      | 100AT      | 2                                                       |
| 30            | 120                     | 120AT      | 1                                                       | 60                      | 120AT      | 2                                                       |
| 37            | 150                     | 150AT      | 1                                                       | <i>7</i> 5              | 150AT      | 2                                                       |
| 45            | 170                     | 200AT      | 1                                                       | 85                      | 100AT      | 1                                                       |
| 55            | 200                     | 200AT      | 1                                                       | 100                     | 100AT      | 1                                                       |
| 75            | 250                     | 250AT      | 1                                                       | 130                     | 150AT      | 1                                                       |
| 90            | 300                     | 300AT      | 1                                                       | 150                     | 150AT      | 1                                                       |

In the case the single-phase motor or motor capacity is not on the selection chart, use the following calculation to make your selection:

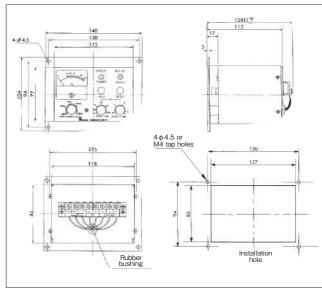
### CT size $\geq$ motor rated current x number of wire(s) passing through the CT hole



### Basic connection diagram



- Notes:


  1.If the voltage of the main circuit exceeds 250VAC, install a step-down transformer Tr. As well, do not improperly wire the power source wires (AC100V or AC200V).

  2. If the CT's secondary side is left open while the primary side is energized, it will cause damage to the CT. When the Shock Relay is not connected, short-circuit the CT's secondary side.
- Short-Great the CT's Secondary side.

  3. Coil capacity of the electromagnetic contactor MC which TSB150 output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding..

### Special models and additional specifications

■ TSB151P, TSB152P (panel mounted type) outline dimensions



### ■ Notes on CT (current transformer) selection

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows an  $80 \sim 100\%$  range when rated current flows.

### Shock Relay SS Series

### **Features**

Output relay self-holding type

Output relay return type when detecting over-current (fail-safe)

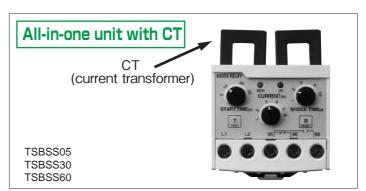
**Economically priced** 

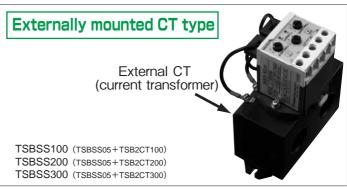
**Broad current setting range** 

High repeating accuracy

Includes TEST/ RESET buttons

All-in-one unit with CT (current transformer)


Special model for the conformance to UL/cUL standards


**CE** marking

DIN rail (35mm) mountable

Can be used with a single-phase motor

Special model for the conformance to CCC standards





### **Standard Specifications**

| Ite         | ns                  | Model No.                             | TSBSS05                                           | TSBSS30                                                                 | TSBSS60      | TSBSS100                 | TSBSS200        | TSBSS300     |  |  |  |
|-------------|---------------------|---------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|--------------|--------------------------|-----------------|--------------|--|--|--|
|             |                     | urrent setting range)**3              | 0.5~5A                                            | 3~30A                                                                   | 5~60A        | 10~100A                  | 20~200A         | 30~300A      |  |  |  |
|             | Applicable          | 200V class                            | 0.1~0.75kW                                        | 1.5~5.5kW                                                               | 7.5~11kW     | 15~18.5kW                | 22~37kW         | 45~75kW      |  |  |  |
|             | motor capacity      | 400V class                            | 0.2~2.2kW                                         | 3.7~11kW                                                                | 15~22kW      | 30~45kW                  | 55~90kW         | 110~132kW    |  |  |  |
| _           |                     | Ambient temperature                   |                                                   |                                                                         | _20°C        | ~60°C                    |                 |              |  |  |  |
| Common      | V4 1                | Ambient humidity                      |                                                   |                                                                         | 45~85%RH: n  | o condensation           |                 |              |  |  |  |
| Ē           | Work<br>environment | Vibration                             |                                                   |                                                                         |              | 5.9m/s <sup>2</sup>      |                 |              |  |  |  |
| Ö           | environnen          | Altitude                              |                                                   | Less than 2000m                                                         |              |                          |                 |              |  |  |  |
|             |                     | Ambient atmosphere                    | No corrosive gas, dust                            |                                                                         |              |                          |                 |              |  |  |  |
|             | Unit                | model No.                             | TSBSS05                                           | TSBSS30                                                                 | TSBSS60      | TSBSS05                  | TSBSS05         | TSBSS05      |  |  |  |
|             | Current s           | etting accuracy                       |                                                   |                                                                         | ±10% (       | full scale)              |                 |              |  |  |  |
|             | Set time            | Start time <sup>*3</sup>              |                                                   |                                                                         | *40.2        | 2~30s                    |                 |              |  |  |  |
|             | range               | Shock time <sup>*3</sup>              |                                                   |                                                                         | <b>*50.2</b> | 2~10s                    |                 |              |  |  |  |
|             | Control power s     | supply voltage (L1 - L2)              |                                                   |                                                                         | AC100~24     | 0V, 50/60Hz              |                 |              |  |  |  |
|             | Maximum m           | otor circuit voltage                  |                                                   |                                                                         | AC600V,      | 50/60Hz                  |                 |              |  |  |  |
|             | Current o           | letection system                      |                                                   |                                                                         | Two-phase    | e CT system              |                 |              |  |  |  |
|             |                     | Self-holding                          |                                                   |                                                                         | Includes s   | elf-holding              |                 |              |  |  |  |
|             | Output relay<br>*1  | Normal state                          |                                                   | At start up there is a 0.5s delay, then the output relay excites        |              |                          |                 |              |  |  |  |
|             |                     | Abnormal case                         |                                                   | When it trips or the power is shut off, the output relay is not excited |              |                          |                 |              |  |  |  |
|             |                     | Contact capacity                      |                                                   | 1c contact, AC240V 3A (in the case of a resistance load)                |              |                          |                 |              |  |  |  |
| · <u>=</u>  |                     | Minimum applicable load <sup>*2</sup> | DC10V, 10mA                                       |                                                                         |              |                          |                 |              |  |  |  |
| Main unit   |                     | Reset method                          | Press the RESET button or cut the operation power |                                                                         |              |                          |                 |              |  |  |  |
| ā.          | Output relay        | Mechanical                            |                                                   |                                                                         | 10,000,0     | ,000 times               |                 |              |  |  |  |
| >           | life-span ´         | Electrical                            |                                                   | 100,000 times                                                           |              |                          |                 |              |  |  |  |
|             | Test                | t functions                           | Internal circuit and output relay operation check |                                                                         |              |                          |                 |              |  |  |  |
|             | Withstand           | Between the circuit and case          |                                                   | AC2000V, 6                                                              |              | er supply circuit and co | ontact circuit) |              |  |  |  |
|             | voltage             | Between contacts                      |                                                   | AC1000V, 60Hz, 1 minute                                                 |              |                          |                 |              |  |  |  |
|             | 0                   | Between circuit                       |                                                   | AC2000V, 6                                                              |              | er supply circuit and co | ontact circuit) |              |  |  |  |
|             | Gr                  | ross mass                             |                                                   |                                                                         |              | ding external CT)        |                 |              |  |  |  |
|             | Power               | When AC110V                           |                                                   |                                                                         | 2.7VA(       |                          |                 |              |  |  |  |
|             | consumption         | When AC200V                           |                                                   |                                                                         | 11.0VA       | (1.2W)                   |                 |              |  |  |  |
|             |                     | ail mounting                          |                                                   | O                                                                       |              |                          | ×               |              |  |  |  |
|             |                     | UL•cUL                                |                                                   | *6×                                                                     |              |                          | ×               |              |  |  |  |
|             |                     | CE                                    |                                                   | 0                                                                       |              |                          | ×               |              |  |  |  |
|             | F. 1                | CCC                                   |                                                   | *6×                                                                     |              | T00.0071.00              | ×               | TOD 0.070.6. |  |  |  |
|             |                     | CT Model No.                          |                                                   | Not needed                                                              |              | TSB2CT100                | TSB2CT200       | TSB2CT300    |  |  |  |
| External CT |                     | rimary current                        |                                                   |                                                                         |              | 100A                     | 200A            | 300A         |  |  |  |
| ern         |                     | condary current                       |                                                   |                                                                         |              |                          | 5A              |              |  |  |  |
| Ž           | Ro                  | ited load                             |                                                   |                                                                         |              |                          | 5VA             |              |  |  |  |
|             |                     | Mass                                  |                                                   |                                                                         |              |                          | 0.5kg           |              |  |  |  |

Notes: #1. During normal operation the output relay is ON, and when the Shock Relay operates it is OFF (refer to page 82).

#2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

- As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.
- 3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.4. Although the minimum value on the display is 5s, values smaller than 5s can be set with the dial.
- \$5. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.
- %6. Special model is available for the conformance to cUL and CCC standards.



### Part Names and Functions

### LOAD CURRENT volume (A)

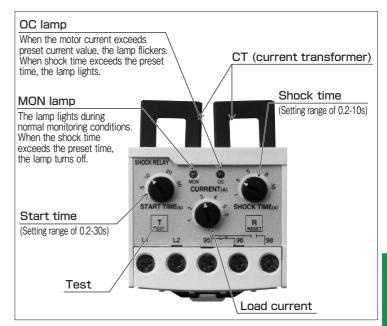
Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

### START TIME volume (s)

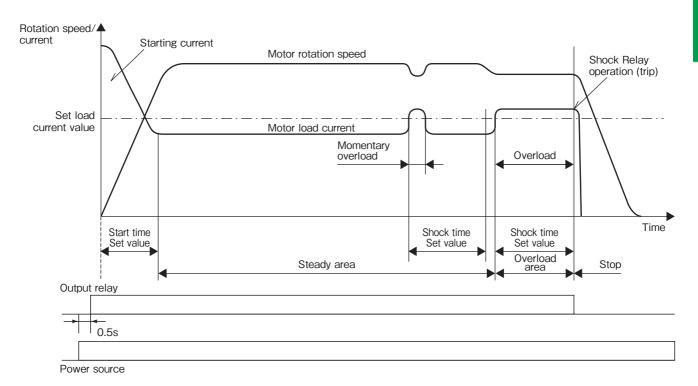
When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

### **TEST** button

Shock Relay operation can be tested stand-alone or during motor operation.

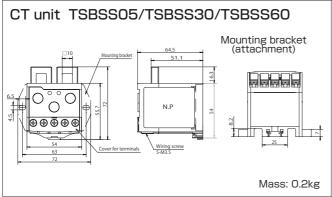

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

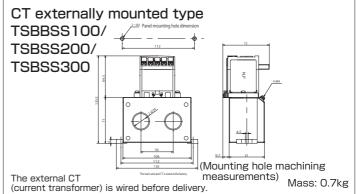
### **RESET button**


After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

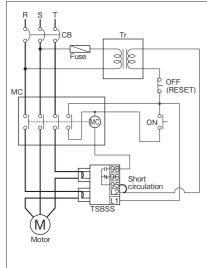
### SHOCK TIME volume (s)

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.





### **Operational Mode**





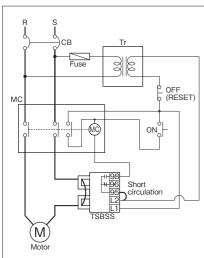

### **Outline dimensions**





### Basic connection diagram




CB : Circuit breaker
MC : Magnetic contactor
ON : Start switch

OFF: Stop switch
Fuse: Fuse
Tr : Transformer

#### Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 is "open"), and when tripping, 95-98 are "open" (95-96 is "closed"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Pass two wires out of three phases of the motor through the Shock Relay's CT in the same direction.

# Single-phase motor reference schematic for when using the motor



Notes

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a highharmonic noise generator such as an inverter.
- 2. When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 are "open"), and when tripping, 95-98 are "open" (95-96 are "closed"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- 3. Pass one phase through the Shock Relay's CT in the same direction.

As for the split-phase start and capacitor run motor, connect CT to the main coil side.

### Notes on usage

- 1. During normal operation, the output relay is excited (ON). When overload is detected and the Shock Relay activates or the power supply is cut, the output relay is de-excited (OFF).
- Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. In order to increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

| AC            | 2200V class m            | otor                                             | AC400V class motor |                          |                                                  |
|---------------|--------------------------|--------------------------------------------------|--------------------|--------------------------|--------------------------------------------------|
| Capacity (kW) | Shock Relay<br>Model No. | No. of wires<br>that pass through<br>the CT hole | Capacity (kW)      | Shock Relay<br>Model No. | No. of wires<br>that pass through<br>the CT hole |
| 0.1           | TSBSS05                  | 4                                                | _                  | _                        | _                                                |
| 0.2           | TSBSS05                  | 3                                                | 0.2                | TSBSS05                  | 4                                                |
| 0.4           | TSBSS05                  | 2                                                | 0.4                | TSBSS05                  | 3                                                |
| 0.75          | TSBSS05                  | 1                                                | 0.75               | TSBSS05                  | 2                                                |
| 1.5           | TSBSS30                  | 3                                                | 1.5                | TSBSS05                  | 1                                                |
| 2.2           | TSBSS30                  | 2                                                | 2.2                | TSBSS05                  | 1                                                |
| 3.7           | TSBSS30                  | 1                                                | 3.7                | TSBSS30                  | 3                                                |
| 5.5           | TSBSS30                  | 1                                                | 5.5                | TSBSS30                  | 2                                                |
| 7.5           | TSBSS60                  | 1                                                | 7.5                | TSBSS30                  | 1                                                |
| 11            | TSBSS60                  | 1                                                | 11                 | TSBSS30                  | 1                                                |
|               | _                        | _                                                | 15                 | TSBSS60                  | 1                                                |
| _             |                          | _                                                | 18.5               | TSBSS60                  | 1                                                |
|               |                          | _                                                | 22                 | TSBSS60                  | 1                                                |

 Because products conforming to CE markings have been electro-magnetically tested for compatibility based on industrial environmental standards, they are not for household, commercial or light industrial use.

### Model No.

CT Unit Type - External Mounted CT Type



Load current
(maximum current
setting)
SS Series
30...30A
Shock Relay

60···60A 100···100A 200···200A 300···300A

### **Features**

Output relay automatic return type

Output relay activating type when detecting over-current

**Economically priced** 

**Accurate current setting** 

High repeatability

**Test function** 

All-in-one unit with CT (current transformer)

Can be mounted on a DIN rail (35mm)

Can be used with a single-phase motor

Special model for the conformance to CCC standards

# All-in-one unit with CT

(current transformer)

TSBSA05 TSBSA10 TSBSA30 TSBSA60



### **Externally mounted CT type**

External CT (current transformer)

TSBSA100 (TSBSA05+TSB2CT100) TSBSA200 (TSBSA05+TSB2CT200) TSBSA300 (TSBSA05+TSB2CT300)



### Standard specifications

| Fur       | Function Model                   |                              | TSBSA05                                          |                               |                   |                        |           |            |           |  |
|-----------|----------------------------------|------------------------------|--------------------------------------------------|-------------------------------|-------------------|------------------------|-----------|------------|-----------|--|
|           | Load current (cu                 | urrent setting range)**3     | 0.5∼5A                                           | 1~10A                         | 3~30A             | 5~60A                  | 10~100A   | 20~200A    | 30~300A   |  |
|           | Motor                            | 200V class                   | 0.1~0.75kW                                       | 1.5~2.2kW                     | 3.7~5.5kW         | 7.5~11kW               | 15~18.5kW | 22~37kW    | 45~75kW   |  |
| _         | capacity                         | 400V class                   | 0.2~2.2kW                                        | 3.7kW                         | 5.5~11kW          | 15∼22kW                | 30∼45kW   | 55~90kW    | 110~132kW |  |
| Common    |                                  | Ambient temperature          |                                                  |                               |                   | −20°C~60°C             |           |            |           |  |
| Com       |                                  | Ambient humidity             |                                                  |                               | 45~8              | 35%RH: no conden       | sation    |            |           |  |
|           | Work<br>environment              | Vibration                    |                                                  | Less than 5.9m/s <sup>2</sup> |                   |                        |           |            |           |  |
|           |                                  | Altitude                     |                                                  | Less than 2000m               |                   |                        |           |            |           |  |
|           |                                  | Atmosphere                   |                                                  | No corrosive gas or dust      |                   |                        |           |            |           |  |
|           | Ur                               | nit model                    | TSBSA05                                          | TSBSA10                       | TSBSA30           | TSBSA60                | TSBSA05   | TSBSA05    | TSBSA05   |  |
|           | Current s                        | etting accuracy              |                                                  |                               |                   | $\pm$ 10% (full-scale) |           |            |           |  |
|           | Time setting                     | Start time <sup>*3</sup>     |                                                  |                               |                   | *40.2~10s              |           |            |           |  |
|           | range                            | Shock time <sup>*3</sup>     |                                                  |                               |                   | **40.2~5s              |           |            |           |  |
|           | Operation power source (A1 – A2) |                              |                                                  |                               | AC1               | 100∼240V, 50/6         | 0Hz       |            |           |  |
|           | Maximum motor circuit voltage    |                              |                                                  |                               | A                 | AC600V, 50/60H         | z         |            |           |  |
|           | Current of                       | detection system             |                                                  |                               |                   | 2 phase CT system      | ı         |            |           |  |
|           |                                  | Self-holding                 | No self-holding (automatically returns after 1s) |                               |                   |                        |           |            |           |  |
| Jni.      | Output relay                     | Normal state                 | Output relay is not excited                      |                               |                   |                        |           |            |           |  |
| Main Unit |                                  | Abnormal case                | Output relay is excited                          |                               |                   |                        |           |            |           |  |
| ž         |                                  | Contact capacity             | 0.2A AC250V $\cos\phi=0.4$                       |                               |                   |                        |           |            |           |  |
|           |                                  | Minimum applicable load*2    | DC10V, 10mA                                      |                               |                   |                        |           |            |           |  |
|           | Output relay<br>life span        | Mechanical                   | 10,000,000 times                                 |                               |                   |                        |           |            |           |  |
|           |                                  | Electrical                   |                                                  |                               |                   | 100,000 times          |           |            |           |  |
|           | Test                             | functions                    |                                                  |                               |                   | d output relay ope     |           |            |           |  |
|           | Withstand                        | Between the circuit and case |                                                  | AC200                         | 00V, 60Hz, 1 minu | 3 117                  |           | t circuit) |           |  |
|           | voltage                          | Between contacts             |                                                  |                               |                   | 000V, 60Hz, 1 m        |           |            |           |  |
|           |                                  | Between circuits             |                                                  | AC200                         | 00V, 60Hz, 1 minu |                        |           | t circuit) |           |  |
|           |                                  | Mass                         |                                                  |                               |                   | (excluding extern      | al CT)    |            |           |  |
|           | Power                            | When AC110V                  |                                                  |                               |                   | 2.7VA (0.35W)          |           |            |           |  |
|           | consumption                      | When AC200V                  |                                                  |                               |                   | 11.0VA (1.2W)          |           |            |           |  |
|           |                                  | ail mounting                 |                                                  | 0                             |                   |                        |           | ×          |           |  |
|           |                                  | CT Model No.                 |                                                  | Not neede                     | d                 |                        |           | SB2CT200   | TSB2CT300 |  |
| 5         |                                  | rimary current               |                                                  | _                             |                   | 1                      | 00A       | 200A       | 300A      |  |
| External  |                                  | condary current              |                                                  | _                             |                   |                        |           | 5A         |           |  |
| EX        | Ro                               | ated load                    |                                                  |                               |                   |                        |           | 5VA        |           |  |
| Notes     | v W.1. The energi                | Mass                         |                                                  | - cite of the TCDCC           |                   |                        |           | 0.5kg      |           |  |

Notes: \*1. The operation of the TSBSA Series is the complete opposite of the TSBSS Series.

- W2. When directly input to put relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.
   As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.
- \*3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.
- \*\*4. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.
  \*\*5. Special model is available for the conformance to CCC standards.



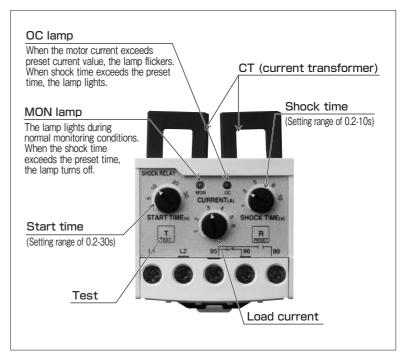
### Part Names and Functions

### LOAD CURRENT setting

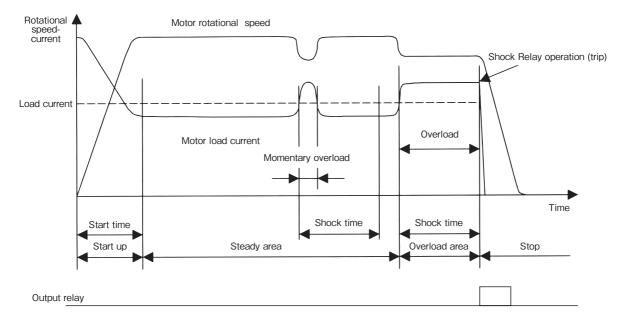
Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

#### START TIME setting

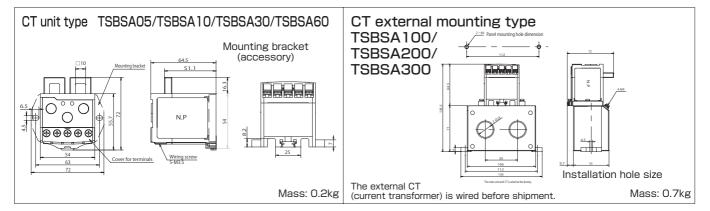
When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.


### **TEST function**

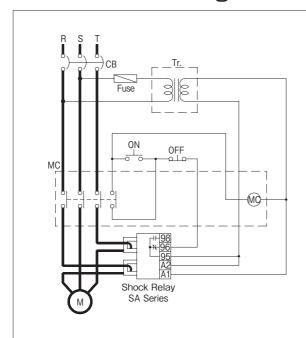
Shock Relay operation can be tested stand-alone or during motor operation.


(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

### SHOCK TIME setting


Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.




### **Operational Mode**



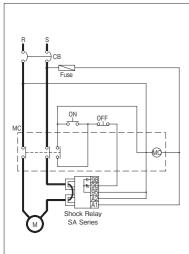
### Outline dimensions



#### Basic connection diagram



CB : Circuit breaker
MC : Magnetic contactor
ON : Start switch
OFF : Stop switch


Fuse: Fuse

Tr : Step-down transformer/ Insulation transformer

#### Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC.
   Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. The TSBSA contact output 95-98 is "open" during normal state (95-96 is "closed"), when tripping 95-98 is "closed" (95-96 is "open"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Two wires out of three phases of the motor are passed through the Shock Relay's CT in the same direction.

#### Single-phase reference connection diagram



#### Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC.
   Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. The TSBSA contact output 95-98 is "open" during normal state (95-96 is "closed"), when tripping 95-98 is "closed" (95-96 is "open"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- 1 phase of the motor is passed through the Shock Relay's CT in the same direction.

For when the split-phase or condensor start, connect the CT to the phase of the main coil side.

#### Model No.

## TSBSA05

Load current Maximum preset current value
05...5A
10...10A
Shock Relay
30...30A
60...60A

100···100A 200···200A 300···300A

#### Number of wire(s) that pass through the CT hole

Depending on motor capacity, use the chart on the right to select the applicable Shock Relay model and number of wire(s) to pass through the CT hole.

In order that increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

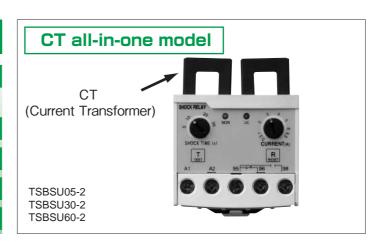
(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

| Α                | C200V class mot          | or                                               | AC400V class motor |                          |                                            |  |  |
|------------------|--------------------------|--------------------------------------------------|--------------------|--------------------------|--------------------------------------------|--|--|
| Capacity<br>(kW) | Shock Relay<br>Model No. | No. of wires that<br>pass through the<br>CT hole | Capacity<br>(kW)   | Shock Relay<br>Model No. | No. of wires that pass through the CT hole |  |  |
| 0.1              | TSBSA05                  | 4                                                | _                  |                          | _                                          |  |  |
| 0.2              | TSBSA05                  | 3                                                | 0.2                | TSBSA05                  | 4                                          |  |  |
| 0.4              | TSBSA05                  | 2                                                | 0.4                | TSBSA05                  | 3                                          |  |  |
| 0.75             | TSBSA05                  | 1                                                | 0.75               | TSBSA05                  | 2                                          |  |  |
| 1.5              | TSBSA10                  | 1                                                | 1.5                | TSBSA05                  | 1                                          |  |  |
| 2.2              | TSBSA10                  | 1                                                | 2.2                | TSBSA05                  | 1                                          |  |  |
| 3.7              | TSBSA30                  | 1                                                | 3.7                | TSBSA10                  | 1                                          |  |  |
| 5.5              | TSBSA30                  | 1                                                | 5.5                | TSBSA30                  | 1                                          |  |  |
| 7.5              | TSBSA60                  | 1                                                | 7.5                | TSBSA30                  | 1                                          |  |  |
| 11               | TSBSA60                  | 1                                                | 11                 | TSBSA30                  | 1                                          |  |  |
| _                | _                        | _                                                | 15                 | TSBSA60                  | 1                                          |  |  |
|                  | _                        | _                                                | 18.5               | TSBSA60                  | 1                                          |  |  |
| _                | _                        | _                                                | 22                 | TSBSA60                  | 1                                          |  |  |

## Shock Relay SU Series

## **Feature**

#### **Under-load Detection Type**

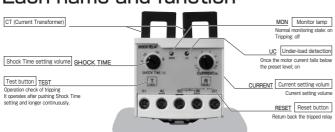

Once the motor current falls below the preset level, it can detect an under-load and send a signal to stop the motor.

Compact all-in-one CT (Current Transformer)

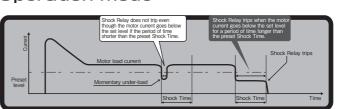
**Includes Test and Reset buttons** 

DIN rail (35mm) is available

Can also be used with a single phase motor




## Standard specifications


|                      | Model No.                                           | TSBSU05-2                                         | TSBSU30-2                                      | TSBSU60-2       |  |  |  |  |
|----------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------|--|--|--|--|
| (                    | Current setting range *1,*2                         | 0.5∼5A                                            | 3~30A                                          | 5~60A           |  |  |  |  |
| S                    | Shock Time setting range *1                         |                                                   | 0.2~30s                                        |                 |  |  |  |  |
|                      | Current setting accuracy                            |                                                   | ±10% (full scale)                              |                 |  |  |  |  |
| Contro               | ol power supply voltage (A1 – A2)                   | AC 200~240V±10% 50/60Hz                           |                                                |                 |  |  |  |  |
| М                    | aximum motor circuit voltage                        |                                                   | AC 600V 50/60Hz **3                            |                 |  |  |  |  |
|                      | Current detection system                            |                                                   | 2 phase CT system                              |                 |  |  |  |  |
| Display              | MON lamp                                            | N                                                 | ormal monitoring state: MON lamp (green) is    | on              |  |  |  |  |
| Display              | UC lamp                                             | I                                                 | Detection of under current: UC lamp (red) is o | n               |  |  |  |  |
|                      | Contact arrangement                                 |                                                   | 1c                                             |                 |  |  |  |  |
|                      | Contact rating                                      |                                                   | 3A AC250V cos <i>φ</i> =1                      |                 |  |  |  |  |
|                      | Recommended amperes (in case of frequent operation) |                                                   | 0.2A and below AC250V $\cos\phi$ =0.4          |                 |  |  |  |  |
| Output relay         | Minimum application load <sup>∗</sup> 4             |                                                   | DC10V, 10mA                                    |                 |  |  |  |  |
|                      | Operation                                           |                                                   | Relay is excited when tripping                 |                 |  |  |  |  |
|                      | Self-holding                                        | Yes (refer to the diagram shown in the next page) |                                                |                 |  |  |  |  |
|                      | Life                                                | 100,000 times at contact rating load              |                                                |                 |  |  |  |  |
|                      | Reset method                                        |                                                   | RESET button: ON or Power source: off          |                 |  |  |  |  |
|                      | Ambient temperature                                 |                                                   | −20~60°C                                       |                 |  |  |  |  |
|                      | Storage temperature                                 |                                                   | −30~70°C                                       |                 |  |  |  |  |
| Work environment     | Humidity                                            |                                                   | 45~85%RH; no condensation                      |                 |  |  |  |  |
| , ronk diringinioni  | Altitude                                            |                                                   | 2000m and below                                |                 |  |  |  |  |
|                      | Atmosphere                                          | No corrosive g                                    | as nor dust; Pollution degree 3 and below; ir  | the control box |  |  |  |  |
|                      | Vibration                                           |                                                   | 5.9m/s² and below                              |                 |  |  |  |  |
| nsulation resistance | Between case and circuit                            |                                                   | $10 M\Omega$ and above (DC500V megger)         |                 |  |  |  |  |
| Withstand            | Between case and circuit                            |                                                   | AC2000V 60Hz 1 min.                            |                 |  |  |  |  |
| voltage              | Between contacts                                    |                                                   | AC1000V 60Hz 1 min.                            |                 |  |  |  |  |
| , onago              | Between circuits                                    |                                                   | AC2000V 60Hz 1 min.                            |                 |  |  |  |  |
| Materials            | Case                                                |                                                   | Polycarbonate, UL94V0                          |                 |  |  |  |  |
|                      | Cover for terminals                                 | Nylon 6                                           |                                                |                 |  |  |  |  |
|                      | Power consumption                                   | 2VA and below                                     |                                                |                 |  |  |  |  |
|                      | Mounting                                            |                                                   | 35mm DIN rail or attached bracket              |                 |  |  |  |  |
| Dimensions           | Main unit (including CT)                            |                                                   | Length 62 x width 54 x height 66mm             |                 |  |  |  |  |
| Mass                 | Main unit (including CT)                            |                                                   | 0.2kg                                          |                 |  |  |  |  |

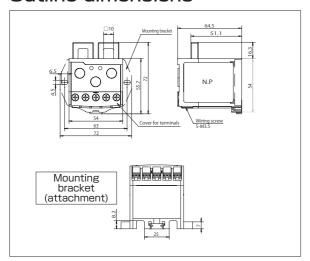
<sup>\*1.</sup> Current and Shock Time setting ranges are those which can be set, but do not show the upper or lower limits of the setting volume.

#### Each name and function

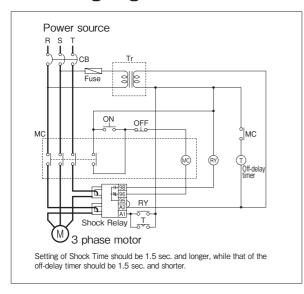


#### Operation mode

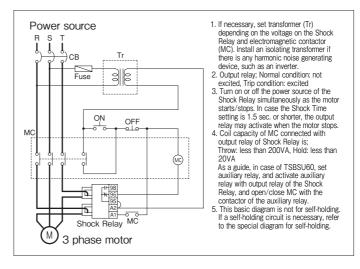



<sup>\*2.</sup>In the case that the current, at normal state, exceeds the setting range, each model can allow up to 100A respectively.

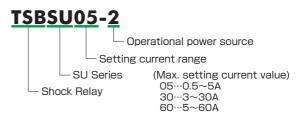
<sup>\*3.</sup>In the case of an inverter drive, there is a possibility of malfunction due to the distortion of the current waveform. If the frequency is within the range of 30 to 60Hz, it can be used because the influence is minor.


\*4.Be sure to input minute electric currents through the relay when inputting an output relay contact directly into the PLC (Programmable logic controller), because there is a risk of contact failure due to minute electric current.




#### Outline dimensions




#### Self-holding diagram for reference



#### Basic diagram



#### Model No.



## Number of wire(s) that pass through the CT (Current Transformer) hole

Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. These numbers are rough indication of when the motor load factor is 80 to 100%. In case the motor load factor is low, increase the number of wires that pass through the CT hole as necessary to improve the setting accuracy. In case the motor is not listed below (small capacity, single phase, different voltage, etc.), select the model and number of wire(s) passing through the CT hole depending on the setting current.

|                  | AC 200V class 3 phase motor         |                                               | AC 400V class 3 phase motor |                                     |                                               |  |  |
|------------------|-------------------------------------|-----------------------------------------------|-----------------------------|-------------------------------------|-----------------------------------------------|--|--|
| Capacity<br>(kW) | Applicable<br>Shock Relay Model No. | Number of wires that pass through the CT hole | Capacity<br>(kW)            | Applicable<br>Shock Relay Model No. | Number of wires that pass through the CT hole |  |  |
| 0.1              | TSBSU05-2                           | 4                                             | _                           | _                                   | _                                             |  |  |
| 0.2              | TSBSU05-2                           | 3                                             | 0.2                         | TSBSU05-2                           | 4                                             |  |  |
| 0.4              | TSBSU05-2                           | 2                                             | 0.4                         | TSBSU05-2                           | 3                                             |  |  |
| 0.75             | TSBSU05-2                           | 1                                             | 0.75                        | TSBSU05-2                           | 2                                             |  |  |
| 1.5              | TSBSU30-2                           | 3                                             | 1.5                         | TSBSU05-2                           | 1                                             |  |  |
| 2.2              | TSBSU30-2                           | 2                                             | 2.2                         | TSBSU05-2                           | 1                                             |  |  |
| 3.7              | TSBSU30-2                           | 1                                             | 3.7                         | TSBSU30-2                           | 3                                             |  |  |
| 5.5              | TSBSU30-2                           | 1                                             | 5.5                         | TSBSU30-2                           | 2                                             |  |  |
| 7.5              | TSBSU60-2                           | 1                                             | 7.5                         | TSBSU30-2                           | 1                                             |  |  |
| 11               | TSBSU60-2                           | 1                                             | 11                          | TSBSU30-2                           | 1                                             |  |  |
| _                | _                                   | _                                             | 15                          | TSBSU60-2                           | 1                                             |  |  |
| _                | _                                   | _                                             | 18.5                        | TSBSU60-2                           | 1                                             |  |  |
| _                | _                                   | _                                             | 22                          | TSBSU60-2                           | 1                                             |  |  |

Note 1) In case the number of the wires that pass through the CT hole is more than 2 times, it is necessary to convert the current scale value of CURRENT volume.

<sup>(</sup>Ex.) When a wire passes two times through the CT, the value on the CURRENT scale should be at half value. 2) In case the motor capacity exceeds the above motor capacity, use the external CT.

## Shock Relay 50 Series

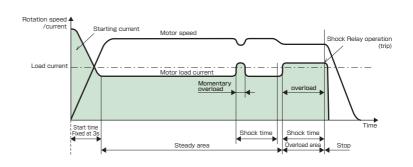
## **Features**

- 1. Economically priced
- 2. Automatic reset
- 3. Additional specifications available



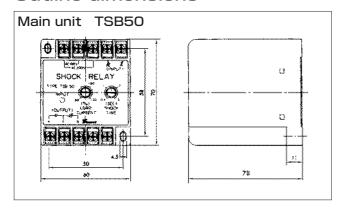
## Standard specifications

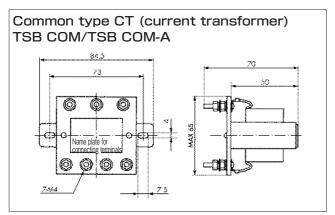
| Fu             | unction                | Model                             | TSB50-COM                                                          |  |  |  |  |  |
|----------------|------------------------|-----------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
|                |                        | 200V class                        | 0.2~3.7kW*1                                                        |  |  |  |  |  |
|                | Motor                  | 400V class                        | 0.2~3.7kW                                                          |  |  |  |  |  |
| o              |                        | Ambient temperature               | -10°C~50°C                                                         |  |  |  |  |  |
| Ē              | Work environment       | Ambient humidity                  | 45~85%RH: no condensation                                          |  |  |  |  |  |
| Common         |                        | Vibration                         | Less than 5.9m/s <sup>2</sup>                                      |  |  |  |  |  |
|                |                        | Altitude                          | Less than 1000m                                                    |  |  |  |  |  |
|                |                        | Atmosphere                        | No corrosive gas, dust                                             |  |  |  |  |  |
|                | Unit N                 | Nodel No.                         | TSB50                                                              |  |  |  |  |  |
|                | Load current (cur      | rent setting range)*3             | 50~130% (100%=5mA)                                                 |  |  |  |  |  |
|                | Current se             | tting accuracy                    | ±10% (full-scale)                                                  |  |  |  |  |  |
|                | T:                     | Start time                        | Fixed at 3s                                                        |  |  |  |  |  |
|                | Time setting range     | Shock time                        | 0.3~3s                                                             |  |  |  |  |  |
|                | Control power          | er supply voltage                 | AC100/110V or AC200/220V 50/60Hz ±10%                              |  |  |  |  |  |
|                | Maximum mo             | tor circuit voltage               | AC600V, 50/60Hz                                                    |  |  |  |  |  |
|                | Current de             | tecting system                    | Single-phase CT system                                             |  |  |  |  |  |
| . <del>=</del> | Output relay           | Self-holding                      | No self-holding (automatic return)                                 |  |  |  |  |  |
| Main Unit      |                        | Normal operation                  | Output relay is not excited                                        |  |  |  |  |  |
| .⊑             |                        | Abnormal case                     | Output relay is excited                                            |  |  |  |  |  |
| ×              |                        | Contact capacity                  | 1s contact, AC250V 0.1A (inductive load cos∮=0.4)                  |  |  |  |  |  |
|                |                        | Minimum applicable load*2         | DC10V, 10mA                                                        |  |  |  |  |  |
|                | Output relay life span | Mechanical                        | 10,000,000 times                                                   |  |  |  |  |  |
|                | , , ,                  | Electrical                        | 100,000 times                                                      |  |  |  |  |  |
|                | Test f                 | unctions                          | Not available                                                      |  |  |  |  |  |
|                |                        | Space between circuit and housing | AC1500V, 60Hz, 1minute (power supply circuit and contact circuit)  |  |  |  |  |  |
|                | Withstand voltage      | Contact spacing                   | AC500V, 60Hz, 1 minute                                             |  |  |  |  |  |
|                |                        | Circuit spacing                   | AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit) |  |  |  |  |  |
|                |                        | Mass                              | 0.3kg (not including external CT)                                  |  |  |  |  |  |
|                |                        | consumption                       | 0.5VA                                                              |  |  |  |  |  |
|                | Attached               | External CT                       | TSB COM                                                            |  |  |  |  |  |
| ט              | Rated pri              | mary current                      | 0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A,                              |  |  |  |  |  |
| External       | ·                      | <u> </u>                          | 4.0A, 5.3A, 7.0A, 9.0A, 10.0A, 16.0A                               |  |  |  |  |  |
| ter            |                        | ondary current                    | 5mA                                                                |  |  |  |  |  |
| ŭ              |                        |                                   | 0.5VA                                                              |  |  |  |  |  |
|                | Mo                     | ass                               | 0.5kg                                                              |  |  |  |  |  |


- 1. If TSBCOM-A (small capacity type CT) is used, it can be used for less than 0.1kW motors.

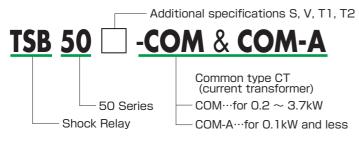
  2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure. As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.
- 3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

## **Each Part and Function**


## **Operational Mode**







## *SAFCON*

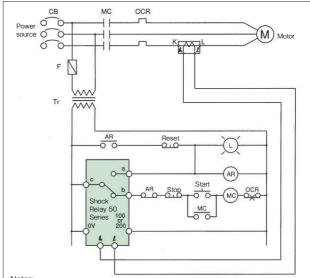
#### **Outline dimensions**





#### Model No.




Note) Use main unit with CT as a set.

#### ■ CT (current transformer) Selection Notes

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows 80% to 100% range when rated current flows.

#### Basic connection diagram



Notes:

- 1. When the main circuit's voltage exceeds 220VAC, install a step down transformer. As well, take care not to make a mistake with the power source (AC100V or AC200V) wiring.
- (AC100V or AC200V) wiring.

  2. If the CT's secondary side is left open while the primary side is energized, it will cause damage to the CT.
- When the Shock Relay is not connected, short-circuit the CT's secondary side.

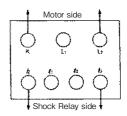
  3. Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.

## Common CT (current transformer)

- TSB COM (standard type) can be used with a 0.2 to 3.7kW motor.
- TSB COM-A (small capacity type) can be used with a 0.1kW and smaller motor.

#### ■TSB COM (standard type)

|               | Motor vo    | ltage AC20       | 00/220V          | Motor voltage AC400/440V |                                |                     |  |  |
|---------------|-------------|------------------|------------------|--------------------------|--------------------------------|---------------------|--|--|
| Motor<br>(kW) |             | Connectin        |                  | Motor rated              | Connectin                      | g terminal          |  |  |
| (KVV)         | current (A) | Motor side       | Shock Relay side | current (A)              | Motor side                     | Shock Relay side    |  |  |
| 0.2           | 1.75        | K-L <sub>2</sub> | k-ℓ,             | 0.75                     | K-L <sub>2</sub>               | $\ell_1$ - $\ell_2$ |  |  |
| 0.4           | 2.5         | K-L <sub>2</sub> | $k-\ell_2$       | 1.5                      | K-L <sub>2</sub>               | $\ell_2$ - $\ell_3$ |  |  |
| 0.75          | 4.0         | K-L <sub>2</sub> | $k-\ell_3$       | 2.0                      | L <sub>1</sub> -L <sub>2</sub> | $\ell_2$ - $\ell_3$ |  |  |
| 1.5           | 7.0         | K-L <sub>1</sub> | k-ℓ,             | 3.3                      | L <sub>1</sub> -L <sub>2</sub> | $k$ - $\ell_2$      |  |  |
| 2.2           | 10.0        | K-L,             | $k$ - $\ell_2$   | 5.3                      | L <sub>1</sub> -L <sub>2</sub> | $k-\ell_3$          |  |  |
| 3.7           | 16.0        | K-L <sub>1</sub> | $k$ - $\ell_3$   | 9.0                      | K-L <sub>1</sub>               | $\ell_1$ - $\ell_3$ |  |  |


Note:

Common type CT, motor side  $L_1 \cdot L_2$ : Shock Relay side  $\ell_1 \cdot \ell_2$  combination, 1A output CT can be combined.

#### ■TSB COM-A (small capacity type)

| Motor rated | Connecting terminal |                  |  |  |  |  |
|-------------|---------------------|------------------|--|--|--|--|
| current (A) | Motor side          | Shock Relay side |  |  |  |  |
| 0.15        | K-L <sub>2</sub>    | $k-\ell_1$       |  |  |  |  |
| 0.25        | K-L <sub>2</sub>    | $k$ - $\ell_2$   |  |  |  |  |
| 0.4         | K-L <sub>2</sub>    | $k$ - $\ell_3$   |  |  |  |  |
| 0.6         | K-L <sub>1</sub>    | $k-\ell_1$       |  |  |  |  |
| 1.0         | K-L <sub>1</sub>    | $k$ - $\ell_2$   |  |  |  |  |
| 1.6         | K-L,                | k-l,             |  |  |  |  |

Note: Select by current value



## Additional specifications chart

| A     | dditional specs. | Subtropical specifications | Control power supply voltage modification | Start time modification | Shock time modification |
|-------|------------------|----------------------------|-------------------------------------------|-------------------------|-------------------------|
| Model |                  | S                          | ٧                                         | T1                      | T2                      |
| TS    | B50              | 0                          | 0                                         | 0                       | 0                       |

#### Notes:

- 1. Refer to page 82 for detailed specifications.
- 2. Specify operational power source voltage for the Shock Relay in the case of additional specification V.
- 3. Specify required start time and shock time in the case of additional specifications T1 and T2.

©: Multiple specifications available

| MEMO |      |      |
|------|------|------|
|      |      |      |
|      |      |      |
|      | <br> | <br> |
|      | <br> | <br> |
|      | <br> | <br> |
|      |      |      |
|      |      | <br> |
|      | <br> | <br> |
|      | <br> | <br> |
|      | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      | <br> |

# Control Devices

# Mechanical Torque Keeper, MINI-KEEPER



Torque Keeper TFK Series -- p113~p123



MINI-KEEPER MK Series p125~p129

## **Torque Keeper**

## **Features**

The friction facings of the slipping clutch and brake are made with special fine chemical fibers.

#### Long life

Special fine chemicals are used for friction facings, so much longer life can be expected when compared to other types of brake lining.

## Slipping torque stability

Torque fluctuation is very small, so stable torque can be transmitted.

#### Constant torque repeatability

Even with high frequent repeated slippage, stable torque is transmitted consistently.

#### Lightweight

Due to the aluminum AF flange, the Torque Keeper is light in weight.

## Compact

Its special design makes for significant space savings. The Torque Keeper is more compact than other braking devices.

## Wide torque range

Each size has a wide torque range.

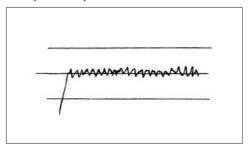
## Easy torque setting

Torque indicators make torque setting easy.

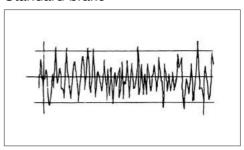
## Ease of operation

Operation is easy due to the easy to use adjusting nut.

## **Greasing unnecessary**

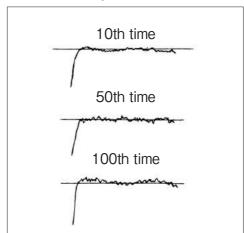

Grease and cooling are not needed.

## Quick finished bore delivery


Finished bores can be made for quick delivery. (Refer to page 119 for details)

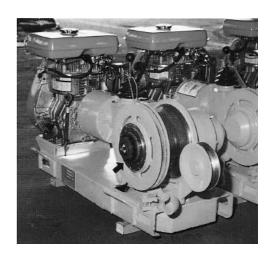


#### Torque Keeper

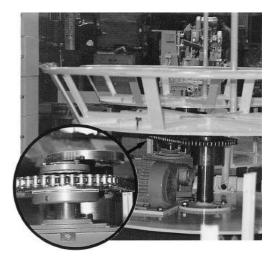



#### Standard brake




Compared to our ordinary products

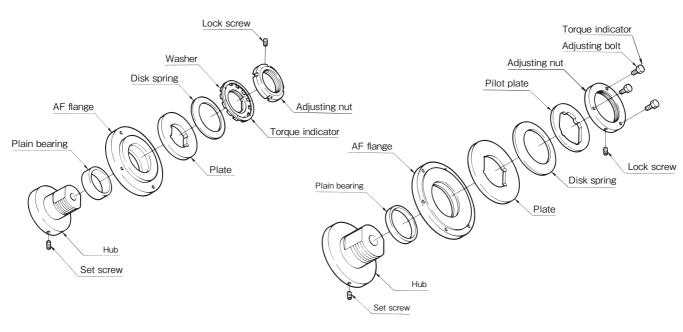
#### Intermittent slip




#### Long life/ Stable/ Easy to operate!

Our brakes have embarked on a new era of the fine chemical fiber. By using these fine chemical fibers, the TSUBAKI Torque Keeper can achieve a longer product life than that of the conventional type of brake lining. This brand new type of Torque Keeper brake has been designed with an abrasion resistance, the use of a torque indicator, weight savings and other aspects that make it easy to use. For the driving of each conveyor's accumulation and brakes for automatic machineries as well as others, we recommend TSUBAKI Torque Keeper for all industrial equipment brake mechanisms.







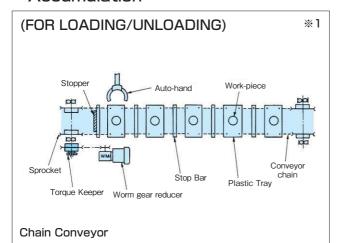

## Construction

## TFK20 • 25 • 35

## TFK50 · 70



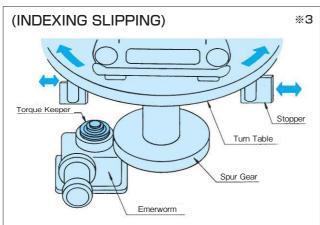



#### Purpose and Machine Type Pallet Cart Conveyor Chain Conveyor \*1 Accumulation Roller Conveyor \*2 For stopping at correct position **Belt Conveyor** due to stable slipping feature of the Torque Keeper Turning Table \*3 **Indexing Table** Paper Feeder **Printing Machine** Ink Roll **-Transfer Machine** Turnover Device Electronic Device Table Lifter Lifting Equipment Intermittent Slip -Pallet Lifter Due to repetition -Tray Lifter of slipping and connecting, Roll Feeder EB Press Machine driven side is **Leveller** held with stable TORQUE KEEP torque. Roll Feeder Wire Processing Machine Leveller **Textile Machine Braking Automatic Cart** Machine Tool -Grinding Machine\*4 Packaging Film Unwinder **Automatic Packaging** Machine Adhesive Tape Winder Steel Cord Winder Wire Processing Continual Machine Tensioner Slip Film Machine Braking unit for **Tensioner** various types Spraying Machinery -Hose Winder of machines driven Office Machinery -Transcribe Ribbon Winder continuously. Winch -Prevents Wires From Loosening Training Machine\*5 **Exercise Machine** Fitness Machine **Bolt Tightener** Special-Use Machine **Nut Tightener** Dragging -Valve Tightener \*6 The Torque Keeper can apply Food Processing stable load to the machine. Cap Tightener Machinery

Note: Refer to page 116 for  $1 \sim 6$ .

Load Testing Equipment

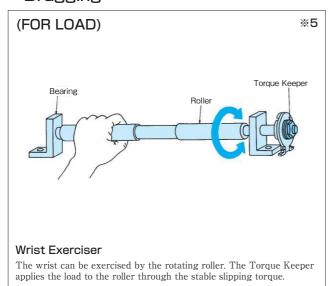
#### **Applications**

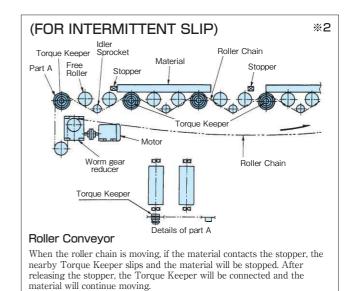

#### -Accumulation-



When the stop bar contacts the stopper, the Torque Keeper slips and the conveyor stops.  $\,$ 

When the stopper is unset, the Torque Keeper connects and the conveyor resumes operation.

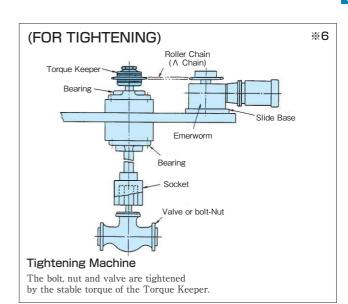

#### —Braking—




#### Turn Table for Parking System

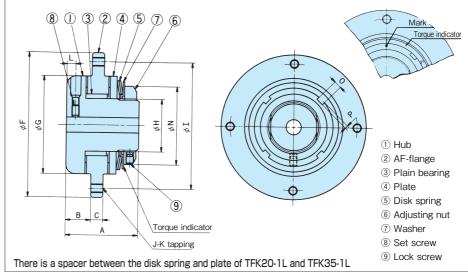
At the parking station the car is rotated in the exit direction on the turn table. When the turn table comes to the correct position, it will be stopped by the stopper. The slipping of the Torque Keeper protects the drive unit from damage.

#### —Dragging—









#### Winding of Film, Paper or Sandpaper

The gear motor winds the film, paper or sand paper through the Torque Keeper. In this case, the Torque Keeper is slipping under low rpm, so it can apply stable tension.

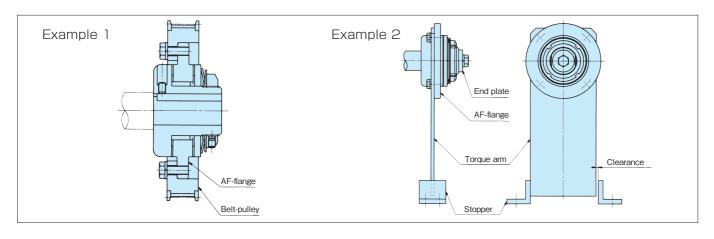


#### TFK20·25·35



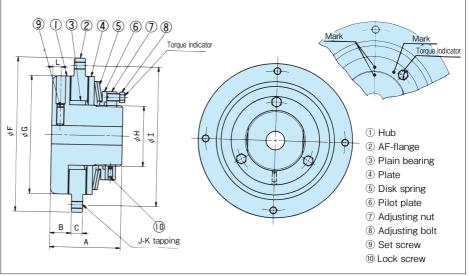


|           |                                  |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             | L         | Jnit : mm |     |    |    |    |    |      |   |    |   |   |         |        |      |
|-----------|----------------------------------|--------------|--------------|----|------------|----|--------|----|----|----------|---------------|----|----|----|-----|-----------------------------|-----------|-----------|-----|----|----|----|----|------|---|----|---|---|---------|--------|------|
|           | С-и: 1                           | Rough        | Max.         |    | Dimensions |    |        |    |    |          |               |    |    |    |     | Weight                      |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| Model No. | Setting torque range N·m {kgf·m} | bore<br>dia. | bore<br>dia. | А  | В          | С  | F (h7) | G  | Н  | I<br>PCD | J-K<br>Nodia. | L  | Z  | 0  | Р   | Adjusting nut<br>dia.×pitch | Set screw |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK20-1L  | 0.59 ~ 1.18<br>{0.06 ~ 0.12}     |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK20-1   | 1.76 ~ 5.88<br>{0.18 ~ 0.6}      | 7            | 14           | 37 | 13.3       | 7  | 84     | 50 | 24 | 70       | 4-M6          | 5  | 38 | 5  | 2   | M24×1.0                     | M5 x 8    | 0.56      |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK20-2   | 3.92 ~ 11.8<br>{0.4 ~ 1.2}       |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK25-1L  | 1.76 ~ 4.12<br>{0.18 ~ 0.42}     |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK25-1   | 3.92 ~ 16.7<br>{0.4 ~ 1.7}       | 10           | 22           | 22 | 22         | 22 | 22     | 22 | 22 | 22       | 22            | 22 | 22 | 22 | 22  | 22                          | 48        | 16.8      | 8 8 | 96 | 65 | 35 | 84 | 4-M6 | 6 | 52 | 5 | 2 | M35×1.5 | M5 x 8 | 0.76 |
| TFK25-2   | 7.84 ~ 32.3<br>{0.8 ~ 3.3}       |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK35-1L  | 5.88 ~ 11.8<br>{0.6 ~ 1.2}       |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK35-1   | 11.8 ~ 44.1<br>{1.2 ~ 4.5}       | 17           | 25           | 62 | 19.8       | 8  | 120    | 89 | 42 | 108      | 4-M6          | 7  | 65 | 6  | 2.5 | M42×1.5                     | M6 x 12   | 1.5       |     |    |    |    |    |      |   |    |   |   |         |        |      |
| TFK35-2   | 20.6 ~ 89.2<br>{2.1 ~ 9.1}       |              |              |    |            |    |        |    |    |          |               |    |    |    |     |                             |           |           |     |    |    |    |    |      |   |    |   |   |         |        |      |


Note: 1. All rough bore types are in stock.
2. An M5 lock screw is included.

#### Installation

1. When installing the belt-pulley, sprockets etc, fix the outside diameter (dimension F) of the AF-flange and spigot facing with a bolt tightly. (Example 1) The sprocket minimum number of teeth to be shown is on page 118.


The recommended tolerance of the spigot facing is H7 or H8.

- 2. When installing the torque arm, fix it to the AF flange with bolts tightly.
  - Also, the tip of the torque arm should be supported in the rotational direction only.
  - There should be sufficient free movement for axial direction. (Example 2)



#### TFK50.70





|           |                                  |              |              |    |            |      |           |     |     |          |               |      |                             |                                | Ur        | <u>nit : mm</u> |     |
|-----------|----------------------------------|--------------|--------------|----|------------|------|-----------|-----|-----|----------|---------------|------|-----------------------------|--------------------------------|-----------|-----------------|-----|
|           | С-и: 1                           | Rough-       | Max.         |    | Dimensions |      |           |     |     |          |               |      |                             | Weight                         |           |                 |     |
| Model No. | Setting torque range N·m {kgf·m} | bore<br>dia. | bore<br>dia. | А  | В          | C    | F<br>(h7) | G   | Н   | I<br>PCD | J-K<br>Nodia. | L    | Adjusting nut<br>dia.×pitch | Adjusting bolt<br>dia. X pitch | Set screw |                 |     |
| TFK50-1L  | 11.8 ~ 29.4<br>{1.2 ~ 3.0}       |              |              |    |            |      |           |     |     |          |               |      |                             |                                |           |                 |     |
| TFK50-1   | 28.4 ~ 125<br>{2.9 ~ 12.8}       | 20           | 42           | 42 | 76         | 22.8 | .8 12     | 166 | 127 | 65       | 150           | 4-M8 | 9                           | M65×1.5                        | M8 × 1    | M8 x 20         | 4.0 |
| TFK50-2   | 52.9 ~ 252<br>{5.4 ~ 25.7}       |              |              |    |            |      |           |     |     |          |               |      |                             |                                |           |                 |     |
| TFK70-1L  | 29.4 ~ 70.6<br> 3.0 ~ 7.2        |              |              |    |            |      |           |     |     |          |               |      |                             |                                |           |                 |     |
| TFK70-1   | 69.6 ~ 341<br>{7.1 ~ 34.8}       | 30           | 64           | 98 | 24.8       | 12   | 216       | 178 | 95  | 200      | 6-M8          | 10   | M95×1.5                     | M10×1.25                       | M10 x 20  | 9.4             |     |
| TFK70-2   | 134 ~ 650<br>{13.7 ~ 66.3}       |              |              |    |            |      |           |     |     |          |               |      |                             |                                |           |                 |     |

Note: 1. All rough bore types are in stock. 2. An M5 lock screw is included.

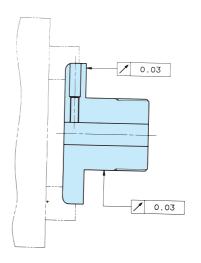
## Minimum number of sprocket teeth

| Model.No  |      | Sprocket<br>RS35 RS40 RS50 RS60 RS80 RS100 RS120 |              |              |              |       |       |  |  |  |  |  |
|-----------|------|--------------------------------------------------|--------------|--------------|--------------|-------|-------|--|--|--|--|--|
| Model.INO | RS35 | RS40                                             | RS50         | RS60         | RS80         | RS100 | RS120 |  |  |  |  |  |
| TFK20     | 32   | 25                                               |              |              |              |       |       |  |  |  |  |  |
| TFK25     | 35   | 28                                               | 23           | 20           | 16           |       |       |  |  |  |  |  |
| TFK35     |      | △ 33<br>(34)                                     | 28           | 24           | 19           | 16    | 14    |  |  |  |  |  |
| TFK50     |      | 45                                               | △ 37<br>(38) | △ 31<br>(32) | 24           | 20    | 18    |  |  |  |  |  |
| TFK70     |      |                                                  | △ 47<br>(48) | △ 39<br>(40) | △ 31<br>(32) | 25    | 22    |  |  |  |  |  |

Note: 1. The roller chain which does not require lubricating oil is

2.  $\triangle$  denotes non-standard A-type sprocket needs a space.In case of using standard sprockets, please use the sprocket in ( ).

#### Model No.


#### TFK35-1-25J-2.5

(No symbol if there is no finished bore)

Size Set torque No. of disk springs-(Unit: kgf·m, No symbol if there is no torque setting) 1...1nc 2...2pcs -Keyway type (J: New JIS normal type, E: Old JIS 2nd grade , No symbol: special keyway) 1L...weak spring Bore diameter

#### **Bore Finishing**

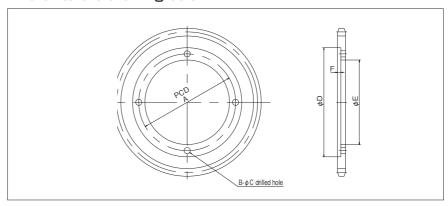
When bore finishing, chuck the outside diameter of the hub as per the following instructions and align the centering. If the centering is bad, there is a possibility of not stable slipping torque due to abnormal run out of friction facing.



## The finished bore Torque Keeper TFK

## Finished bore products can be made for quick delivery

#### ■ Finished bore and keyway

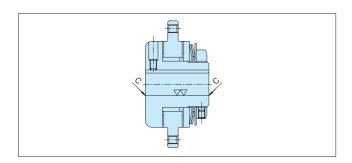

The finished bores of TFK20 ~ TFK70 have been standardized

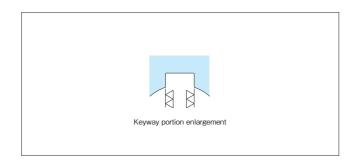
#### Finished bore sizes chart

Jnit : mm

|                            | Unif : mm                                                 |
|----------------------------|-----------------------------------------------------------|
| Torque Keeper<br>Model No. | Finished bore size                                        |
| TFK20-1L                   |                                                           |
| TFK20-1                    | 9,10,11,12,14                                             |
| TFK20-2                    |                                                           |
| TFK25-1L                   |                                                           |
| TFK25-1                    | 14,15,16,17,18,19,20,22                                   |
| TFK25-2                    |                                                           |
| TFK35-1L                   |                                                           |
| TFK35-1                    | 19,20,22,24,25                                            |
| TFK35-2                    |                                                           |
| TFK50-1L                   |                                                           |
| TFK50-1                    | 22,24,25,28,29,30,32,33,<br>35,36,38,40,42                |
| TFK50-2                    | 00,00,00,40,42                                            |
| TFK70-1L                   |                                                           |
| TFK70-1                    | 32,33,35,36,38,40,42,43,45,46,<br>48,50,52,55,56,57,60,63 |
| TFK70-2                    | -0,00,02,00,00,00,00                                      |
| Delivery                   | Ex - Japan Aweeks by sea                                  |

■ Recommended dimensions for drive member processing When manufacturing a drive member, refer to the drawing below.





| Series name | Recommended sprocket finishing dimensions |   |     |        |     |    |
|-------------|-------------------------------------------|---|-----|--------|-----|----|
| Series name | А                                         | В | С   | D (H7) | Е   | F  |
| TFK20       | 70                                        | 4 | 6.6 | 84     | 52  | *3 |
| TFK25       | 84                                        | 4 | 6.6 | 96     | 68  | *3 |
| TFK35       | 108                                       | 4 | 6.6 | 120    | 92  | 4  |
| TFK50       | 150                                       | 4 | 9.0 | 166    | 130 | 5  |
| TFK70       | 200                                       | 6 | 9.0 | 216    | 182 | 5  |

F = 2 when using RS35.

#### Model No.







#### Chamfering and finishing

| Shaft bore diameter | Chamfering size |
|---------------------|-----------------|
| $\phi$ 25 and less  | C0.5            |
| $\phi$ 50 and less  | C1              |
| Above φ51           | C1.5            |

## Shaft bore diameter and keyway specifications

- $\boldsymbol{\cdot}$  Shaft bore diameter tolerance is H7
- $\cdot$  The keyway is new JIS (JIS B 1301-1996) "normal type"
- $\cdot$  Set screws come delivered with the product



#### Selection

When using the Torque Keeper with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

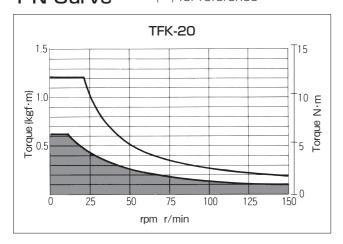
Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

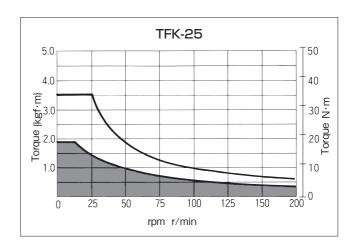
1. Decide the conditions from the table below in accordance with your application (see page 115). Determine the size from the T-N curve graphs on the next page.

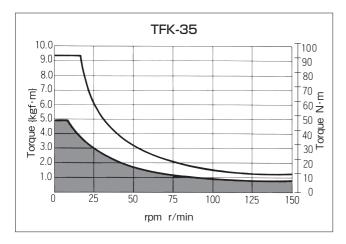
| Application  | Conditions                                                                                                                                                                                                                                                                  | Size                                                                                                                                                                                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accumulation | Determine the following for the Torque Keeper of each conveyor:  ① Slip torque ② Slip rpm ③ Slip time (conveyor stop time) ④ Connection time (conveyor drive time) ⑤ Operating time per day                                                                                 | Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph.  When the slip time is longer than the connection time, and the time used per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph.       |
| Braking      | Determine the following for the Torque Keeper of each machine:  ① Brake torque ② Slip rpm ③ Slip time (brake operating time) ④ Connection time (time when brake not operated) ⑤ Operating time per day Note: Items ③ and ④ are not necessary in case of continual slipping. | Determine a size for which the brake torque and rpm is within the allowable range (below the curve) on the T-N curve graph.  When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph. |
| Dragging     | Determine the following for the Torque Keeper of each machine:  ① Slip torque ② Slip rpm ③ Slip time ④ Connection time ⑤ Operating time per day                                                                                                                             | Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph.  When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph.  |

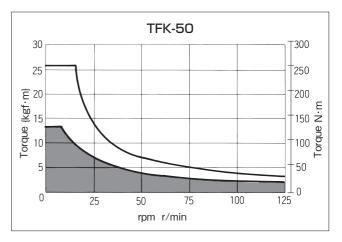
- 2. Verify that the shaft bore range of the chosen Torque Keeper conforms with the shaft diameter to be installed.
- 3. Setting the slip torque:

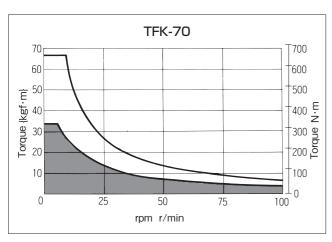
Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 117, 118). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.


For details, see the section, "Handling Part 2" on page 122.


#### Points of caution regarding selection


- 1. Do not allow water or oil to get onto the friction surface. This will cause the torque to drop and unstable slip torque will result.
- 2. The T-N curve graph is intended for use when the ambient temperature is below  $40^{\circ}$ C. Please contact TEM when the ambient temperature is higher than this.
- 3. Please contact TEM when the slip torque for the shaft diameter to be used is smaller than the setting torque range of the Torque Keeper.


#### T-N Curve


{ } for reference











Note: The T-N curve graph is based on the allowable temperature range of the Torque Keeper. If a more stable slipping torque is necessary, we recommend that it be operated within the area.

#### Handling Part 1

- 1. All Torque Keeper units are shipped with rough bores.
  - Finish a shaft bore in the hub after disassembly. Refer to page 118 regarding shaft bore finish.
- 2. Be careful not to mix up parts when disassembling two or more Torque Keepers. When assembling, be sure to use the original parts. If parts are mixed up, the slip torque will not match the torque curve delivered with the unit.
- 3. Be sure that any toothed belts or roller chains, etc., are not over-tensioned when using the Torque Keeper. Unstable slip torque will result if more than the required tension is applied.

## Torque Keer TFK Serie

#### Handling Part 2

Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 117, 118). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

To set the slip torque of TFK 20, 25 and 35, tighten the adjustment nut with a hook spanner wrench. To set the slip torque of TFK 50 and 70, tighten the three adjustment bolts with a wrench. Refer to page 113 to determine the zero point.

#### Setting the slip torque

#### TFK 20, 25 and 35

- (1)When the required slip torque is over the zero point, tighten the adjustment nut to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.
- (2) When the required slip torque is below the zero point, loosen the adjustment nut beyond the point required and then tighten it to the desired angle, in accordance with the attached torque curve.

Example: Set to a slip torque - 30° from the zero point.

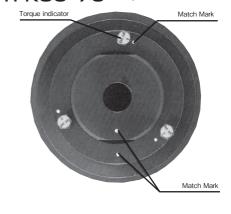
- ① Loosen the adjustment nut to  $-60^{\circ}$  from the zero point.
- ② Tighten the adjustment nut from  $-60^{\circ}$  to  $-30^{\circ}$

#### TFK 50 and 70

- (1)When the required slip torque is over the zero point, tighten the three adjustment bolts to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.
- (2)When the required slip torque is below the zero point, loosen the three adjustment bolts beyond the point required and then tighten them to the desired angle, in accordance with the attached torque curve.

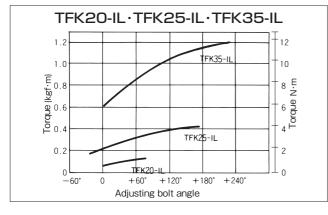
Example: Set to a slip torque - 60° from the zero point.

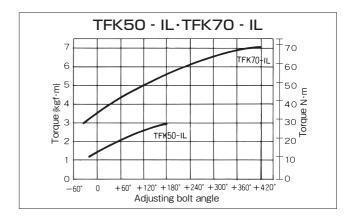
- ① Loosen the adjustment bolts to 90° from the zero point.
- ② Tighten the adjustment bolts from 90° to 60°


(Caution) When initially setting the Torque Keeper or when changing the setting during operation, we recommend running the machine for two or three minutes to run in before normal operation. This will allow you to obtain a more stable slip torque. Break-in as follows in accordance with the slip torque setting.

- (1)When the slip torque is below the zero point:
  - ① Run in the machine at zero point torque for two to three minutes.
  - ② Set the slip torque as explained above and then enter normal operation.

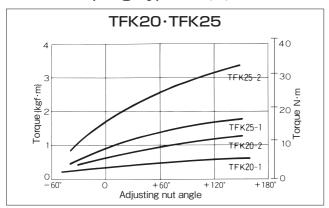
## TFK20·25·35 Torque indicator

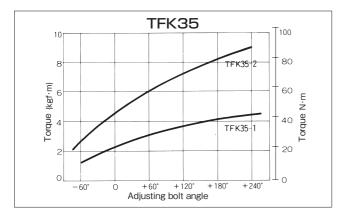




TFK50.70 Torque indicator



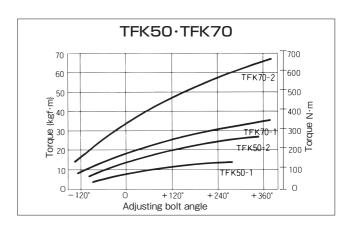
- (2) When the slip torque is above the zero point:
  - ① Set the slip torque as explained above.
  - ② Run in the machine for two to three minutes.
  - 3 Return the adjustment nut or bolts to the zero point.
  - ④ Set the slip torque again and then begin normal operation.


#### Torque Curve Weak Spring Type






#### **Torque Curve**


#### Standard Spring Type { } for reference





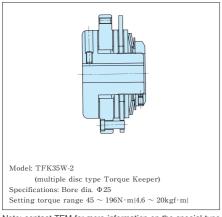
Note: 1. Indicator 0 on torque curve shows 50% of maximum torque.

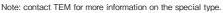
2. Each torque curve is an example. Refer to the attached torque curve of the actual unit.

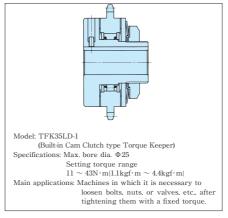


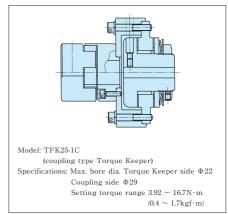
#### Finding the zero point

After finishing the shaft bore and re-assembling the unit, determine the zero point as explained below:


#### TFK 20, 25 and 35


- 1. During re-assembly, match the "0" on the torque indicator with the position of the set screw on the hub (part ® on page 117). (Do not allow it to be positioned 180° in the opposite direction.)
- 2. Hand-tighten the adjustment nut and then use a hook spanner wrench to further tighten it until the match mark reaches the "0" position on the torque indicator.


#### TFK 50 and 70


- 1. Tighten the adjustment nut and align it with the match mark on the hub.
- 2. Hand-tighten the bolts and then use a wrench to further tighten them until the "0"position on the indicators align with the match marks.

## Special Type Torque Keeper









## Lock screw/tightening torque

| Hexagon socket head screw | Tightening torque N·m{kgf·cm} |
|---------------------------|-------------------------------|
| M5                        | 3.8 {38.7}                    |
| M8                        | 16 {163}                      |

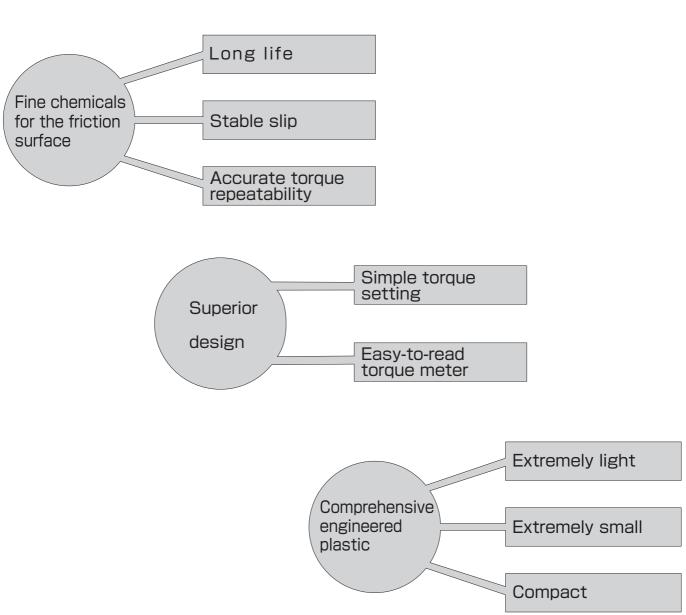
#### Precautions:

When re-tightening the lock screws, make sure to take the following

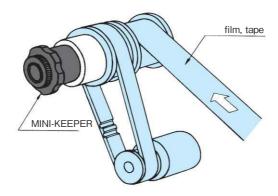
- Confirm that the plug tip has not been removed. If a lock screw is used with a tipless plug, the hub's thread may be damaged or the hub's pocket may get iammed.
- Confirm that the plug's tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- \*If 1. or 2. is found to be the case, exchange the damaged parts with new ones.



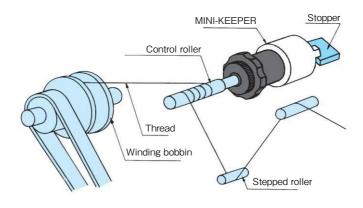
| MEMO |      |
|------|------|
|      |      |
|      |      |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      | <br> |


## **MINI-KEEPER**

## **Features**


Highly accurate, light and super-compact slipping clutch and brake

The TSUBAKI MINI-KEEPER is a super-compact slipping clutch and brake, constructed from fine chemicals and engineering plastic. With the MINI-KEEPER we have achieved supreme levels of lightness, compactness, and accuracy among similar devices. The MINI-KEEPER is ideal for braking, accumulating, and dragging applications in OA equipment and precision machinery.






### **Application Examples**



The MINI-KEEPER slips and maintains constant tension on the tape (or film, etc.). It is ideal for braking in the winding and unwinding.



The MINI-KEEPER is installed on the tension controller in previous stage of the winding roll. It provides stable slip torque and maintains stable tension on the thread.

## <Other potential applications>

Thermal printer

Paper feeder

**Plotter** 

Copier

Textile machine

Wire cutter

Film processing equipment

Accumulation conveyor

Automatic packaging machine

Coil winding machine

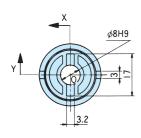
Labeler

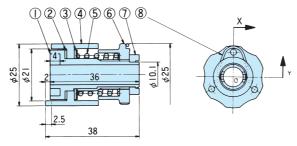
Barcode printer

Electronic device manufacturing equipment

Various robots

Ribbon printer


**Facsimile** 






#### **Dimensions**

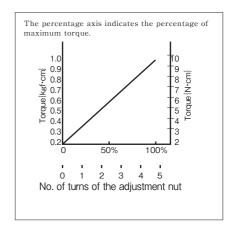
#### **MK08**



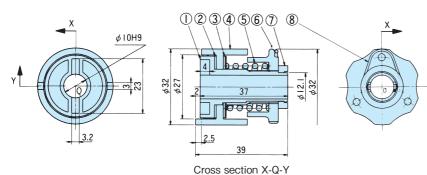


Cross section X-Q-Y

Setting torque range 1.96 ∼ 9.80N·cm {0.2 ~ 1.0kgf⋅cm}


Maximum slip rpm

Refer to "T-N Curve" on the next page


Mass: 18 g

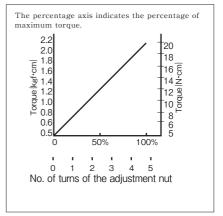
- ① Hub
- ② Friction facing A
- 3 Friction facing B
- 4 Flange
- (5) Coil spring
- ⑥ Adjustment nut
- 7 Stop collar
- Anti-rotation clip

#### Torque Curves

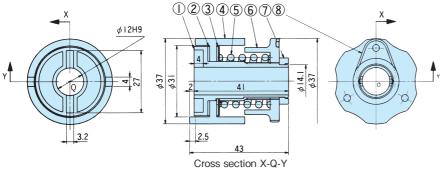


#### MK10




- Setting torque range
- $4.90 \sim 19.6 \text{N} \cdot \text{cm}$
- $\{0.5 \sim 2.0 \text{kgf} \cdot \text{cm}\}$

Maximum slip rpm


Refer to "T-N Curve" on the next page

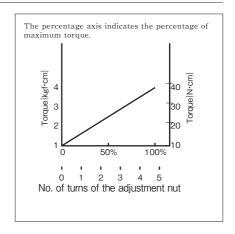
Mass: 30 g

- ① Hub
- ② Friction facing A
- ③ Friction facing B
- 4 Flange
- (5) Coil spring
- 6 Adjustment nut
- 7 Stop collar
- Anti-rotation clip



#### MK12




Note: All models are in stock.

Setting torque range  $10.8 \sim 39.2 \mathrm{N \cdot cm}$  $\{1.1 \sim 4.0 \text{kgf} \cdot \text{cm}\}$ 

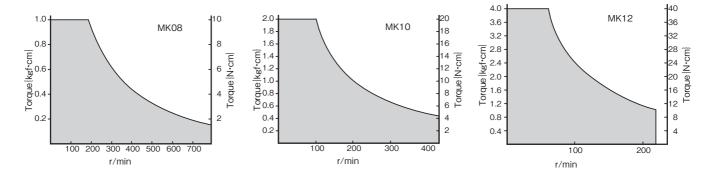
Maximum slip rpm

Refer to "T-N Curve" on the next page Mass: 46 g

- ① Hub
- 2 Friction facing A
- ③ Friction facing B
- 4 Flange
- (5) Coil spring
- 6 Adjustment nut
- 7 Stop collar
  - Anti-rotation clip



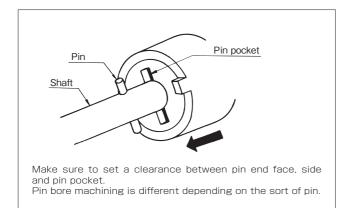
#### Selection


When using the MINI-KEEPER with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes. Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to human disaster and an accidental falling.

Choose set torque and slip rpm from the part of the T-N curve graphs below.

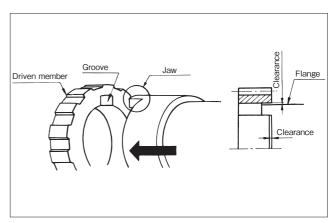
\*The T-N curve graph displays the limit value reached by heat generation during continual slip. When the slip time per one operation is short and the interval is long, it is possible to use the MINI-KEEPER in excess of the T-N value. In this case, please contact TEM for a consultation.

\*Contact TEM for non-standard specifications.


#### T-N Curve



#### Handling

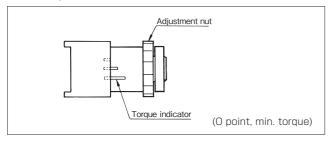

#### Installation onto a shaft

- 1. The MINI-KEEPER's shaft bore is already finished. We recommend a tolerance for the installation shaft dia. of h7 or h8.
- 2. Use the pin pocket (groove) on the end face of the hub to connect the MINI-KEEPER to the shaft. Insert the pin into the shaft, and then set them to the pin pocket as shown in the diagram below. The clearance should be about 0.5mm.

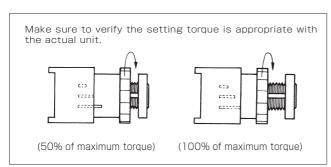


#### Installation onto a driven member

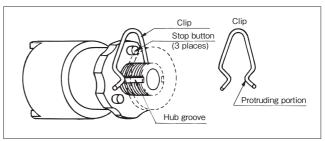
1. Use a jaw at flange to install the MINI-KEEPER onto a driven member (gear, pulley, etc.).




Cut a groove into the end face of the driven member, and slide the jaw into it. At this time, be sure to allow a clearance so that thrust and radial loads do not act on the flange end face including the jaw. The clearance should be about 0.5mm.



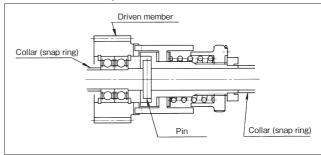

#### Torque setting


1. All MINI-KEEPERs are set at the zero point (minimum torque) before shipment. When in this condition, the scale above the periphery of the adjustment nut is as shown in the diagram below. Verify this.



2. Set the torque by tightening the adjustment nut. Refer to the torque curve on page 127. Use the torque indicator as a guide for the torque setting illustrated below.




3. After setting the torque, fix the adjustment nut to stop it from rotating. Do this by inserting the accessory clip for anti-rotating between the adjustment nut and the stop collar as shown below. Make sure to verify the protruding portion of the clip for anti-rotating is inserted at the hub groove (both sides). Anti-rotation is made by the clip for anti-rotating hitting the stop button (convex portion) of the adjustment nut.



Note: 1. If oil or water gets into the friction facings, it will result in abnormal torque and unstable slipping torque.

2. The standard highest operating ambient temperature for the MINI-KEEPER is 40°C max. If this will be exceeded, contact TEM.

#### Installation example



# Control Devices

## **Electrical**

**Shock Monitor** 

| Fea  | atures                                           | p131   |                   |
|------|--------------------------------------------------|--------|-------------------|
| Mo   | del reference chart                              | p132   |                   |
|      | olication examples of each<br>d basic operations | type   |                   |
|      | Shock Monitor TSM4000Type Shock Monitor          | •      | Cofety            |
|      | TSM4000 Type/TSM4000H1 Type                      | p138   | Safety<br>Devices |
|      | Shock Monitor<br>TSM4000H2 Type                  | p139   |                   |
|      | Shock Monitor<br>TSM4000M1 Type                  | p140   |                   |
|      | Shock Monitor TSM4000M2 Type                     | p141   |                   |
|      | Shock Monitor TSM4000C1 Type                     | - p142 |                   |
| Each | type of external connection, parameter           | -140   | -147              |

settings, electric terminal functions

## **Shock Monitor**

(Industrial Property Right Patent No. 2796775 and others)

## **Features**

The Shock Monitor is a power monitoring safety and control device that can detect even the minimal variations in load by monitoring input power.

#### 1. Ideal for monitoring light loads

For a standard motor there are only minute current variations in the light load zone. Load monitoring of the device used in the light load zone is ideal for monitoring electric power variations in the proportional load.

#### 2. Almost completely unaffected by source voltage variation

Even with a constant load, if the power supply fluctuates then current will fluctuate largely, thus making accurate load detection impossible. While the Shock Monitor is monitoring machine power it is almost completely unaffected by voltage fluctuation, so stable load detection is possible.

#### 3. Can be used with a wide range of frequencies (5-120Hz)

Can be used with an inverter and a servomotor drive. (The inverter's electronic thermal is for burnout protection. Not suitable for device protection.) 

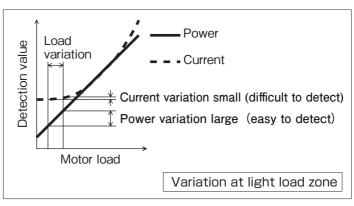
If the power source frequency exceeds 120Hz such as servo motor for machine tool main spindle, consult TEM.

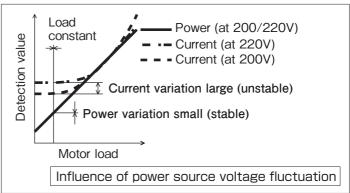
## 4. Quick response

Input power is measured every 0.02s. Right after trouble happens, the signal outputs is a minimum of 0.03s.

#### 5. Load condition recording

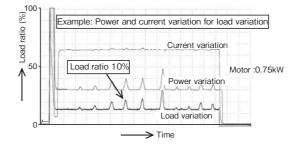
The direct current voltage that is proportionate to motor input power is output, so the load condition can be recorded on the recorder.


#### TSM4000 Series


-200 to +200% is converted into 0 to 10V (basic type)
0 to +200% is converted into 0 to 10V (optional)
0 to +200% is converted into 4 to 20mA (optional)

#### TSM3000 Series

-200 to +200% is converted into 0 to 3V (basic type) 0 to +200% is converted into 0 to 3V (application-specific type) 0 to +200% is converted into 4 to 20mA (special model)








#### Example: Power and current variation for load variation

- (1) The power variation that is proportional to load variation is emerged.
- (2) From the chart below we can see that with a load variation of about 10%, there is almost no change in current, while power makes remarkable change.

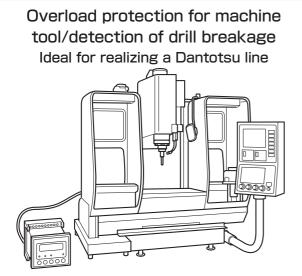




#### Series Specifications

|                                 |                                        | Model No.           | TSM4000                                  | TSM4000H1                             | TSM4000H2                    | TSM4000M1                     | TSM4000M2               | TSM4000C1                               |  |
|---------------------------------|----------------------------------------|---------------------|------------------------------------------|---------------------------------------|------------------------------|-------------------------------|-------------------------|-----------------------------------------|--|
| Item                            |                                        |                     | *1*2 Basic type                          | *2 Economy type                       | Load slaved<br>tracking type | Contact<br>detection type     | Integral power type     | Built-in forward/reverse sequencer type |  |
|                                 |                                        | Capacity            | 0.1 ~ 110kW                              |                                       |                              | -3 - 1 - 7 - 7                |                         |                                         |  |
| Applied *3 Power source voltage |                                        |                     | AC200/220V, AC400/440V                   |                                       |                              |                               |                         |                                         |  |
| moto                            | motor Frequency $5 \sim 120 \text{Hz}$ |                     |                                          |                                       |                              |                               |                         |                                         |  |
| Cont                            | rol powe                               | r supply voltage    | AC90 ~ 250V50/60Hz, DC90 ~ 250V Nonpolar |                                       |                              |                               |                         |                                         |  |
|                                 |                                        | otor voltage        |                                          |                                       |                              | V, MAX                        |                         |                                         |  |
| Input                           | Curr                                   | ent sensor          |                                          | DC2.5V                                |                              |                               |                         |                                         |  |
| -                               | Cor                                    | ntrol input         | X1, X2, X3, IH, RST                      | X1, X2, RST                           | X1, RST                      | X1, X2, X3, X4, X5            | X1, X2, X3, X4, X5      | X1, X2                                  |  |
|                                 | No.                                    | of contact          | 3c                                       | 2c                                    | 2c                           | 3c                            | 3c                      | 2a, 1b, 1c                              |  |
|                                 | Rel                                    | ay contact          |                                          |                                       | AC250V, 0.5A (Induc          | tive load $\cos \phi = 0.4$ ) |                         |                                         |  |
| ţ                               |                                        | output              | DC30\                                    |                                       | ) DC110V, 0.2A (Indu         |                               |                         | V, 4mA                                  |  |
| Output                          | Outpu                                  | nt Mechanical       |                                          |                                       | 10,000,000                   | ) activations                 |                         |                                         |  |
|                                 | relay li                               | fe Electrical       |                                          |                                       | 100,000                      | activations                   |                         |                                         |  |
|                                 | Analog                                 | g output relay      |                                          |                                       | DC0 -                        | ~ 10V                         |                         |                                         |  |
|                                 | Load                                   | Output 1            | High1 - 200 ~ 200%                       | HIGH1 5 ~ 200%                        | HIGH1 1 ∼ 99%                | OUT1 1 ~ 99%                  | OUT1 0~99%              | Overload 5 ~ 200%                       |  |
|                                 | setting                                | Output 2            | High2 - 200 ~ 200%                       | HIGH2 5~200%                          | HIGH2 5 ~ 200%               | OUT2 1 ~ 99%                  | OUT2 5 ~ 200%           | No load 5 $\sim$ 200%                   |  |
| ס                               | level                                  | Output 3            | Low - 99 ~ 99%                           |                                       |                              | OUT3 5 ~ 200%                 | OUT3 5 ~ 200%           |                                         |  |
| Setting                         | Start tim                              | ne setting range    | 0.1 ~ 20.0s                              |                                       |                              |                               |                         | 1 ~ 300s                                |  |
| 0)                              | Sł                                     | ock time            |                                          |                                       | "MIN" or 0                   | $1 \sim 10.0$ s               |                         |                                         |  |
|                                 | sett                                   | ing range           | In case                                  | e motor power souce fr                | equency is 50Hz and l        | nigher, shock time at "I      | MIN" is approximately   | / 50ms.                                 |  |
|                                 | F                                      | Reponse             | Set by number of<br>moving average       | QUICK (Aver                           | age no. 1 time), NORA        | MAL (Average no. 5 ti         | mes), SLOW (Average     | e no. 20 times)                         |  |
|                                 | %4 Inl                                 | nibit function      | Manual/auto switching                    |                                       | nhibit                       | Manual/au                     | to switching            |                                         |  |
| _                               | Relay                                  | self-holding        |                                          | Self-hold/auto                        | reset selectable             |                               | Only OUT3 is selectable | Sequencer function                      |  |
| Function                        | Switchin                               | g detection level   | 8 steps                                  | 4 steps                               | None                         |                               | teps                    | None                                    |  |
| 됩                               |                                        | t function          |                                          |                                       |                              | utput test                    |                         |                                         |  |
|                                 |                                        | eak-hold            | When the                                 | e load ratio exceeds the              | e pre-set level (or falls    | below it), shows the m        | aximum value within s   | hock time.                              |  |
|                                 |                                        | unction             |                                          | Only                                  | when the output is set       | •                             | hold.                   |                                         |  |
|                                 |                                        | r display range     | − 200 ~ 200%                             | - 200 ~ 200%<br>0 ~ 200%              |                              |                               |                         |                                         |  |
| Display                         |                                        | display range       |                                          | 0 ~ 500V                              |                              |                               |                         |                                         |  |
| -                               |                                        | display range       | 0.01 ~ 999A                              |                                       |                              |                               |                         |                                         |  |
|                                 |                                        | cy display range    |                                          |                                       |                              |                               |                         |                                         |  |
|                                 |                                        | onsumption          | 10VA (Inrush current 5A within 5ms)      |                                       |                              |                               |                         |                                         |  |
|                                 | Approxi                                | mate mass Ambient   | 1.0kg                                    |                                       |                              |                               |                         |                                         |  |
|                                 |                                        | temperature         | 0 ~ 50℃                                  |                                       |                              |                               |                         |                                         |  |
|                                 | ork<br>onment                          | Reative humidity    |                                          | 45 ~ 85% RH; there is no condensation |                              |                               |                         |                                         |  |
| CHVIII                          |                                        | Altitude<br>Ambient |                                          | 1000m and less                        |                              |                               |                         |                                         |  |
|                                 |                                        | atomosphere         |                                          | No corrosive gas, dust                |                              |                               |                         |                                         |  |

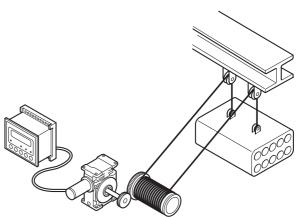
Note: %1. Basic type can monitor not only positive (plus) torque but also negative (minus) torque.


- \*\*2. Basic type and Economy type can monitor power or torque.(Negative torque can not be monitored by the Economy type.)
  - In case of torque monitoring, torque is calculated by the monitored power, and displayed. In this case, rated torque (100%) is that at 60Hz. In case the frequency is 20Hz and below, errors become larger due to motor efficiency. In this case, use for power monitoring.
- \$3. In case Shock Monitor is used at AC400/440V, a 400V class resister "TSM4-PR1" is necessary.
- \*\*4. This is the function to stop the power monitoring of Shock Monitor.Basic, M1 and M2 types can inhibit manually, and between inhibit input terminal and CM are ON within setting time, or during ON, load tratio [0%] flashing and do not monitor power.
  - In addition, if the frequency changes 4Hz/1s of motor voltage, monitoring is automatically stopped. (Auto inhibit)



When using the Shock Monitor with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.


#### Usage examples



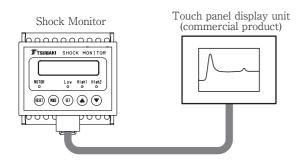
In a drilling process using a machine tool, the Shock Monitor reliably detects not only overload but also any breakage of the drill, preventing defective products from being produced during unattended operation.

Additionally, using a model which calculates integral power values enables detection of wear in the drill with high accuracy. Replacing the drill before breakage can prevent yield decreases.

## Overload protection for a suspension/hoisting device



The Shock Monitor can be used with a hoisting device on a staging set or in a factory. When the load on the device exceeds the design load (allowable load), the drive system is stopped automatically to prevent accidents such as dropping.


The power detection method ensures highly accurate load detection even for high-reduction operation using a worm gear reducer in the drive unit.

#### Application examples of the optional communication function

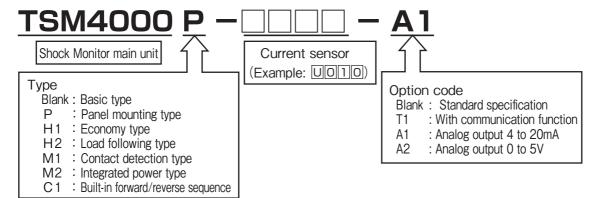
The optionally available communication function enables the combination of the Shock Monitor and a commercially-available touch panel display unit to be used in the following ways:

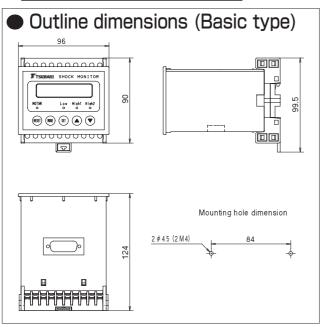
<Functions available with the display unit>

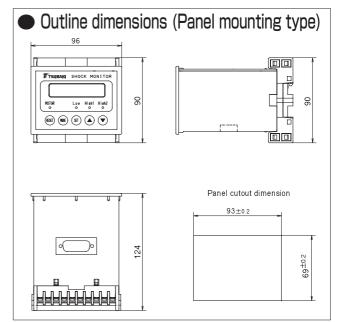
- Displaying of electrical power, current, and voltage data in graph form
- Saving of the above data and transferring the data into memory
- Reading/writing of setting values for a specified parameter



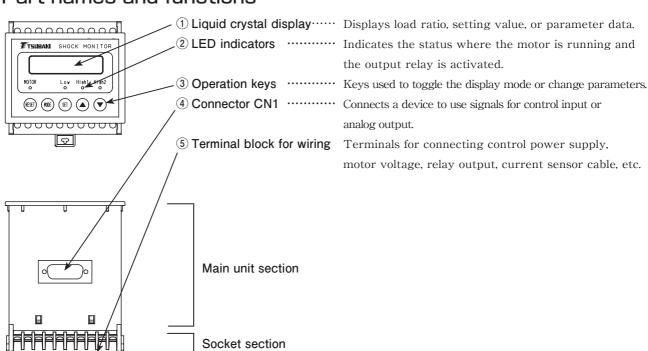
Communication specifications


| item                  | Brief specifications                              |  |
|-----------------------|---------------------------------------------------|--|
| Transmission standard | RS485                                             |  |
| Communication method  | Half-duplex, bidirectional, Modbus protocol       |  |
| Transmission speed    | Selectable from 2.4, 4.8, 9.6, 19.2, and 38.4kbps |  |


<Usage>


- The production process can be monitored using real-time displays of power and current waveforms.
- Checking the waveform of abnormal events is effective in preventive measures or making improvements to guard against device damage.

For details, contact TEM.


#### Model No.







#### Part names and functions



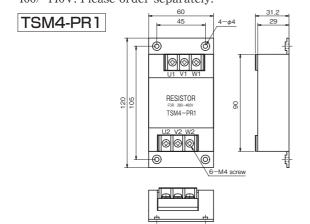


#### Option

#### ■ Current sensor (attachment)

The current sensor brings motor current into the Shock Monitor unit.

Select a model from the chart below depending on the motor capacity and voltage.


|                     | AC 200/2            | 20V motor                                           | AC 400/4            | 40V motor                                           |
|---------------------|---------------------|-----------------------------------------------------|---------------------|-----------------------------------------------------|
| Motor capacity (kW) | Sensor<br>Model No. | Number of wires<br>that pass through<br>the CT hole | Sensor<br>Model No. | Number of wires<br>that pass through<br>the CT hole |
| 0.1                 | TSM-U010            | 6                                                   | TSM-U010            | 12                                                  |
| 0.2                 | TSM-U010            | 3                                                   | TSM-U010            | 6                                                   |
| 0.4                 | TSM-U010            | 2                                                   | TSM-U010            | 3                                                   |
| 0.75                | TSM-U050            | 6                                                   | TSM-U010            | 2                                                   |
| 1.5                 | TSM-U050            | 3                                                   | TSM-U050            | 6                                                   |
| 2.2                 | TSM-U050            | 2                                                   | TSM-U050            | 5                                                   |
| 3.7                 | TSM-U050            | 1                                                   | TSM-U050            | 3                                                   |
| 5.5                 | TSM-U050            | 1                                                   | TSM-U050            | 2                                                   |
| 7.5                 | TSM-U100            | 1                                                   | TSM-U050            | 1                                                   |
| 11                  | TSM-U100            | 1                                                   | TSM-U050            | 1                                                   |
| 15                  | TSM-U150            | 1                                                   | TSM-U100            | 1                                                   |
| 18.5                | TSM-U150            | 1                                                   | TSM-U100            | 1                                                   |
| 22                  | TSM-U200            | 1                                                   | TSM-U100            | 1                                                   |
| 30                  | TSM-M300            | 1                                                   | TSM-U150            | 1                                                   |
| 37                  | TSM-M300            | 1                                                   | TSM-U150            | 1                                                   |
| 45                  | TSM-M400            | 1                                                   | TSM-U200            | 1                                                   |
| 55                  | TSM-M600            | 1                                                   | TSM-M300            | 1                                                   |
| 75                  | TSM-M600            | 1                                                   | TSM-M300            | 1                                                   |
| 90                  | TSM-M800            | 1                                                   | TSM-M400            | 1                                                   |
| 110                 | TSM-M800            | 1                                                   | TSM-M400            | 1                                                   |

## Sensor Model No. TSM-U010, TSM-U050, TSM-U100, TSM-U150, TSM-U200 Current direction indicator Installation holes: 2-φ4 -∞≬ ನ 37 5046-04AG MOLEX 63. 45 **[**[[]] 54 Sensor Model No. TSM-M300, TSM-M400, TSM-M600, TSM-M800 5046-04AG

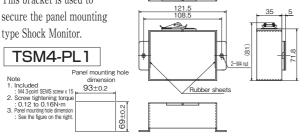
## 40 78 90

#### ■ 400V class resister

It is necessary in case the motor voltage is 400/440V. Please order separately.



#### Sensor cable

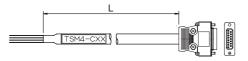

A 1 m length sensor cable (TSM4-S01) comes standard to connect the Shock Monitor and the current sensor. In case a different cable is required, order the cable with the connector below separately.

| Model No.           | Cable length (L) |
|---------------------|------------------|
| TSM4-S01 (attached) | 1 m              |
| TSM4-S03            | 3m               |
| TSM4-S05            | 5m               |
| TSM4-S10            | 10m              |
| TSM4-S20            | 20m              |
| TSM4-S30            | 30m              |
| 020                 |                  |

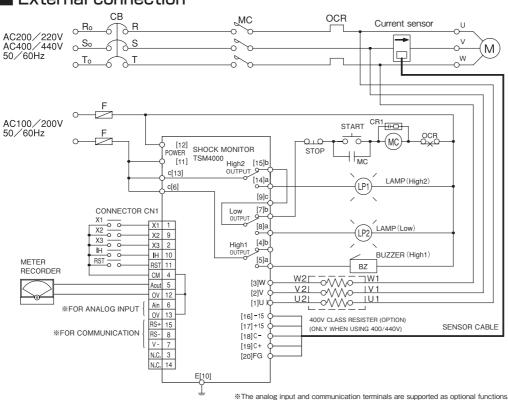


#### Panel mounting bracket

This bracket is used to secure the panel mounting




#### I/O cable


This cable is necessary when you want to perform process changeover from the outside, when resetting the shock monitor, and

when connecting an external meter. It should be ordered separately when necessary.

| Model No. | Cable length (L) |
|-----------|------------------|
| TSM4-C01  | 1 m              |
| TSM4-C03  | 3m               |





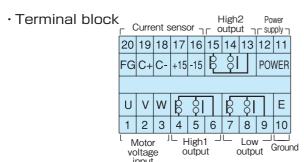


CB : Circuit breaker

STOP: Stop button

: Fuse

MC : Electromagnetic contactor


for motor
OCR : Over current relay
CR1 : CR filter
START: Start button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

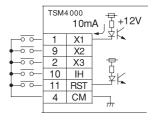
#### Note:

- Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of pass through and current direction.
- Make sure to insert the current sensor into the "phase V", and use sensor cable TSM-SXXN to connect with Shock Monitor.
- 3. If using a 400/440V motor, use 400V class resister shown in dashed line.
- 4. Connect motor voltage terminal of Shock Monitor U[1], V[2], W[3] with the phaseof [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [IH], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

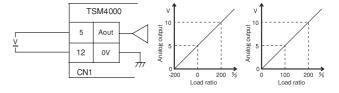
#### ■ Function of terminals



| Name          | Symbol      | IN/<br>OUT | Pin<br>No. | Explanation                     |
|---------------|-------------|------------|------------|---------------------------------|
| Control power | power POWER |            | 11         | Connection of control           |
| supply        | POVVER      | IN         | 12         | power supply                    |
| Ground        | Е           | _          | 10         | Ground terminal                 |
|               | - 15        | OUT        | 16         |                                 |
| Current       | +15         | OUT        | 17         |                                 |
|               | C –         | IN         | 18         | Sensor cable                    |
| sensor        | C+          | IN         | 19         |                                 |
|               | FG          | _          | 20         |                                 |
| A A - 4       | U           | IN         | 1          | A                               |
| Motor         | ٧           | IN         | 2          | Motor voltage input<br>terminal |
| voltage       | W           | IN         | 3          | , iorininai                     |
|               | b           | OUT        | 7          | Relay contact output            |
| Low<br>output | а           | OUT        | 8          | when the lower limit            |
| oulpui        | С           | OUT        | 9          | output is activated             |
| 11: 1.1       | b           | OUT        | 4          | Relay contact output            |
| High 1        | а           | OUT        | 5          | when the higher limit 1         |
| output        | С           | OUT        | 6          | output is activated             |
| H:F0          | С           | OUT        | 13         | Relay contact output            |
| High2         | а           | OUT        | 14         | when the higher limit 2         |
| output        | b           | OUT        | 15         | output is activated             |


#### · Connector CN1

|  | Х | 1 | ХЗ |   | N.  | с. см |     | М | Aout |    | Ain |    | V- |    | R  | 3- |
|--|---|---|----|---|-----|-------|-----|---|------|----|-----|----|----|----|----|----|
|  | 1 |   | 2  | 2 | 3   | 3     | 4   | 4 | Ę    | 5  | (   | 3  |    | 7  | 8  | 3  |
|  | X |   | )  | 1 | 0 1 |       | 1 1 |   | 2    | 13 |     | 1  | 4  | 1  | 5  |    |
|  |   |   | 2  | H | +   | RS    | RST |   | ov c |    | V   | N. | C. | RS | 3+ |    |


Note) Connection to pins No. 3 and 14 is prohibited.

| Name    | Symbol | IN/<br>OUT | Pin<br>No. | Explanation                     |  |
|---------|--------|------------|------------|---------------------------------|--|
|         | X1     | IN         | 1          |                                 |  |
| Process | X2     | IN         | 9          | Power process terminal          |  |
| switch  | Х3     | IN         | 2          |                                 |  |
| Inhibit | IH     | IN         | 10         | Inhibit terminal                |  |
| Common  | CM     | IN         | 4          | X1,X2,X3,IH,RST common terminal |  |
| Reset   | RST    | IN         | 11         | Resetting self-hold status      |  |

#### Control input



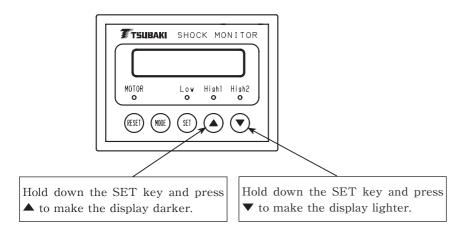
#### Analog output



When the model supports the terminal function as standard, the analog output characteristic can be selected with Parameter 21: OUTPUT SELECT.



#### ■ Parameter setting


| No. | Parameter                    | Data                            | Data when shipment | Contents                                                                                             |  |  |
|-----|------------------------------|---------------------------------|--------------------|------------------------------------------------------------------------------------------------------|--|--|
| 1   | Parameter<br>Lock            | (1)Unlocked<br>(2)Locked (1)    |                    | All parameters can be changed. Parameters other than this parameter cannot be changed.               |  |  |
| 2   | Motor Voltage                | (1)200-230V<br>(2)380-460V      | (1)                | Motor voltage 3 phase 200V class<br>Motor voltage 3 phase 400V class                                 |  |  |
| 3   | Motor kW                     | 0.1 ~ 110kW                     | 0.75               | Setting motor capacity                                                                               |  |  |
| 4   | Start Time                   | 0.1 ~ 20.0s                     | 3.0s               | Setting the start time                                                                               |  |  |
| 5   | Process                      | 1 ~ 8                           | 1                  | Number of process                                                                                    |  |  |
| 6   | High2 Level<br>Process[1]    | -200 ~ -5%<br>5 ~ 200%          | 100%               | Higher 2 level of process 1                                                                          |  |  |
| 7   | Shock Time H2                | MIN,0.1 ~ 10s                   | 1.0s               | Higher 2 shock time                                                                                  |  |  |
| 8   | Output Relay H2              | (1)Self-Hold<br>(2)Auto-Reset   | (1)                | Selecting the upper limit 2 output operation mode.                                                   |  |  |
| 9   | High1 Level<br>Process[1]    | -200 ~ -5%<br>5 ~ 200%          | 80%                | Higher 1 level of process 1                                                                          |  |  |
| 10  | Shock Time H1                | MIN,0.1 ~ 10s                   | 1.0s               | Higher 1 shock time                                                                                  |  |  |
| 11  | Output Relay H1<br>Low Level | (1)Self-Hold<br>(2)Auto-Reset   | (2)                | Selecting the upper limit 1 output operation mode.                                                   |  |  |
| 12  | Process[1]                   | -99 ~ 0 ~ 99%                   | 0%                 | Lower level of process 1                                                                             |  |  |
| 13  | Shock Time L                 | MIN,0.1 ~ 10s                   | 1.0s               | Lower shock time                                                                                     |  |  |
| 14  | Output Relay L               | (1)Self-Hold<br>(2)Auto-Reset   | (1)                | Selecting the lower limit output operation mode.                                                     |  |  |
| 15  | Motor Efficiency             | 10 ~ 100%                       | 100%               | Motor efficiency.                                                                                    |  |  |
| 16  | Response                     | $1\sim50$ times                 | 5times             | Number of moving average sampling operations                                                         |  |  |
| 17  | Inhibit Time                 | IH,0.1 ∼ 10s                    | ΙΗ                 | Inhibit time*                                                                                        |  |  |
| 18  | Auto Inhibit                 | (1)On<br>(2)Off                 | (2)                | Setting the auto inhibit function.                                                                   |  |  |
| 19  | Power/Torque                 | (1)Power<br>(2)Torque           | (1)                | Monitor with motor input power  Monitor with the torque calculated by the power                      |  |  |
| 20  | H2Relay Logic                | (1)Fail Safe<br>(2)Nomal Logic  | (2)                | Selecting the fail-safe operation.                                                                   |  |  |
| 21  | Output Select                | (1)-200 ~ 200%<br>(2)0 ~ 200%   | (2)                | Selecting the analog output.                                                                         |  |  |
| 22  | LCD Backlight                | (1)Always<br>(2)2min            | (1)                | Keeping the backlight on at all times.<br>Turning the backlight off two minutes after key operation. |  |  |
| 23  | Trip Test                    | (1)Motor on/off<br>(2)Motor off | (1)                | Selecton of test mode during motor operation                                                         |  |  |

 ${\rm XInhibit}$  time: Time for which the power detection is temporarily stopped.

#### ■ LCD contrast adjustment

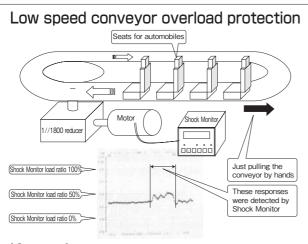
When the LCD display is illegible, hold down the SET key and press  $\blacktriangle$  or  $\blacktriangledown$  key to adjust it.

(Note that excessively high contrast will shorten the LCD service life.)



## New and unique applications for the Shock Monitor

Various application-specific types based on the "Basic type" of TSM4000!!


Our line-up of Shock Monitors fit perfectly with all kinds of applications.

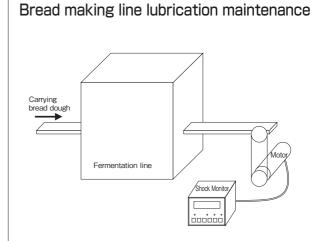
#### Application examples and basic operations of each type

The economical type has fewer functions than the basic type.

Refer to the below charts for a comparison of Shock Monitor functions.

#### Damage prevention




#### Key point

There is little current variation due to a high gear ratio, making it difficult for the Shock Relay to detect the overload, so a power detecting type Shock Monitor is the best option.

#### **Applications**

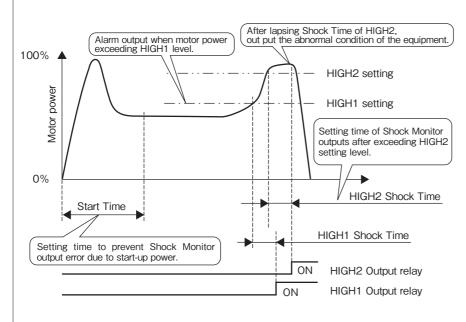
Assembly conveyor, water and sewage treatment, garbage disposal equipment conveyors, etc.

#### ■ Preventive maintenance



#### Key point

Shock Monitor detects even minute load rise due to the lack of lubrication for the chain. It then sends an alarm signal to operate the automatic lubricator.


#### **Applications**

Food processing machines that operate 24 hours a day, etc.

#### Basic operations of TSM4000H1

## • Minute load detection is possible by electric power: Economical

Simplified setting type with fewer functions

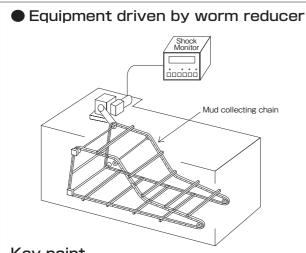


#### [Features]

- 1) Simplified functions means easy set-
- 2) Relay output has two outputs. It can be used as an alarm signal (HIGH1) and an abnormal level output (HIGH2).
- 3) As a set, HIGH1 and HIGH2 can be switched from the external for a maximum of 4 types. It is useful to change the setting depending on the work-piece being carried.
- 4) It comes with an efficient torque\* monitoring function (20 ~ 120Hz) for when using the inverter.

\*Refer to page 132, Note: \*2

#### Comparison on function [Basic model] and [Economical model]


|               | -                                                            |             | -                |  |
|---------------|--------------------------------------------------------------|-------------|------------------|--|
|               | Function                                                     | Basic model | Economical model |  |
| ction         | HIGH1                                                        | 0           | 0                |  |
| oad detection | HIGH2                                                        | 0           | 0                |  |
| Load          | LOW                                                          | 0           | ×                |  |
| Toro          | que monitoring function                                      | 0           | 0                |  |
|               | f selection of detection level<br>lo. of process to monitor) | 8           | 4                |  |
| Moi           | nitoring negative torque                                     | 0           | ×                |  |
| ,,,,,         | moning negative resides                                      |             |                  |  |

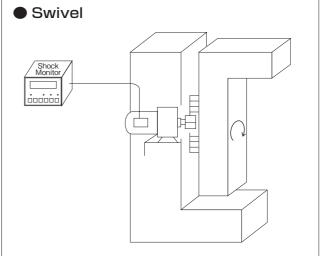


#### Application examples and basic operations of each type

#### 2.[Load following type] TSM4000H2 Type...For general industrial machines

■ Protection for equipment which vary in efficiency




Key point

The efficiency of the reducer varies together with operating time. As well, even for equipment where the load ratio varies, it is possible to detect abnormal condition due to the load following function.

#### Applications

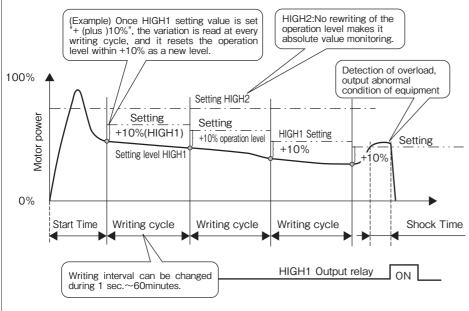
Water treatment equipment, etc.

Protection for equipment which periodically varies in load.



#### Key point

Even if the load of the equipment varies during 1 rotation, it is possible to detect abnormal conditions due to the load following function.


#### Applications

Medical equipment, etc.

#### Basic operations of TSM4000H2

#### The set value automatically varies and follows the variation of load: load following

Because variation in machine efficiency does not affect the Shock Monitor, it makes the ideal overload protection device.



#### [Features]

- 1) For equipment where mechanical efficiency varies by periodically following the operational level and minimizing the efficiency variation effect, the practical overload state can be detected.
- 2) The writing cycle can be changed to meet the fluctuations of the efficiency change.
- 3) While the operational level of HIGH2 is constant and has no variation, absolute value monitoring can be done by

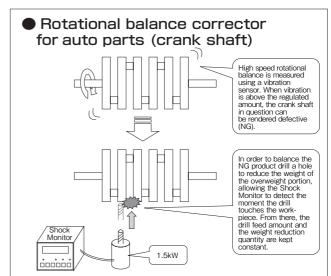
#### Application examples and basic operations of each type

3.[Contact detector type] TSM4000M1 Type····For machine tools (Industrial Property Right Patent No.: 3108798)

■ Tool and work-piece contact detection (Feed speed control, etc.)



Until the grindstone makes contact with the work-piece the feed speed is high. After the Shock Monitor has detected contact with the work-piece, the TSM4000M1 immediately switches to a low feed speed. (shortening the working time)


#### Key point

The instant a minute load contacts the work-piece, it is quickly and accurately detected. Consequently, a substantial decrease in the finishing cycle time is realized.

#### <u>Applications</u>

Metalworking, machine tools, etc.

#### ■ Tool and work piece contact detection



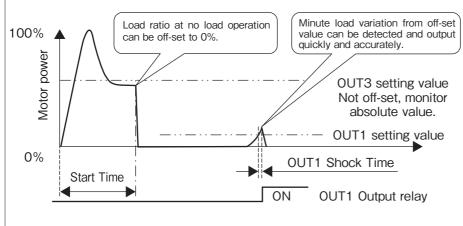
#### Movement

When drilling the hole, if the drill touches the workpiece, it will be detected and the Shock Monitor will immediately output. From there, by keeping feed time constant, the drilled quantity is managed uniformly.

#### Key point

The Shock Monitor ignores common changes to idling power. Because it can only detect work volume, it can securely judge the moment contact is made with the drill (0.03s).

#### Applications


Machine tools (drilling machine, grinding machine, etc.)

Note: If the power source frequency exceeds 120Hz, such as a servo motor for a machine tool's main spindle, consult TEM.

#### Basic operations of TSM4000M1

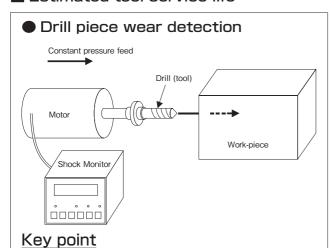
## Rapidly detects work-piece contact: contact detection

The idling position is automatically offset to a 0% load ratio, and the Shock Monitor can only detect work volume.



#### [Features]

- 1) Because the TSM40001 automatically offsets power during idling to 0%, the minute power change during tool and workpiece contact can be detected with high precision. (There are two types of output: OUT1 and OUT2.)
- 2) OUT3 is not an off set value, and absolute value can be monitored.
- 3) In regard to a detection level, as a set, OUT1, OUT2 and OUT3 can be switched from the external for a maxi-mum of 8 types, it can deal with the change of grindstone and work-piece.

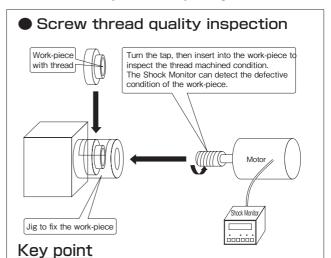



#### Application examples and basic operations of each type

#### 4.[Integrated power model] TSM4000M2 Type···· For machine tools

By integrating 1 cycle of power from the manufacturing process, tool wear condition and breakage, as well as overload can be detected.

#### ■ Estimated tool service life




In regard to a constant pressure finishing machine, even the tool wears but the load variation is small. By taking advantage of the increase in machining time, high precision wear detection with the integrated power model is attained.

#### **Applications**

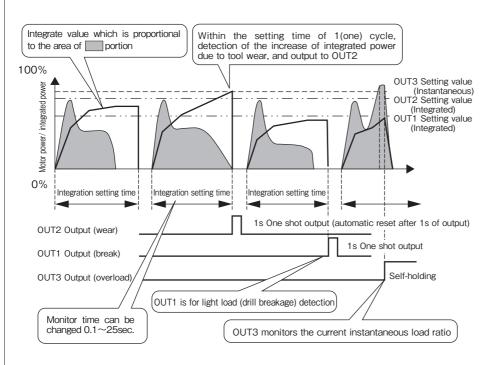
Machine tools, etc.

#### Check the product quality



Like when checking the quality of a tap hole, instantaneous power is unstable and the integrated power model is ideal for applications where setting the detection level is difficult.

#### **Applications**

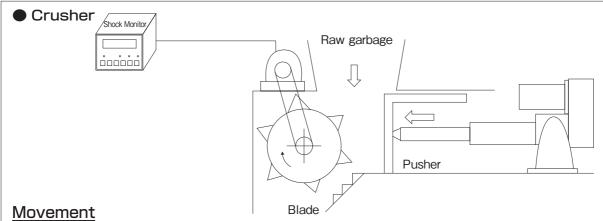

Inspection equipment etc.

Note: If the power source frequency exceeds 120Hz such as a servo motor for a machine tool main spindle, consult TEM.

#### Basic operations of TSM4000M2

## With the sum total of 1 cycle, machine tool wear, breakage and overload can be detected: integrated power

Machine tool wear can be detected by integrated power, and outputting the abnormal condition.




#### [Features]

- In regard to a constant pressure finishing machine, even the tool wears but the load ratio does not increase while the machining time increases. For this application it is monitored by power consumption (area).
- 2) After machining is completed, the drill wear is detected by the upper limit of power integration (OUT2), while the drill breakage can be detected by the lower limit (OUT1).
- With the instantaneous value of OUT3, overload due to jam is monitored with absolute value.
- 4) As a set, there are a maximum of 8 types that OUT1, OUT2 and OUT3 can be switched between from the external. It works with the change of tools and work-pieces.
- 5) The elapsed time setting can be changed easily.

# Application examples and basic operations of each type

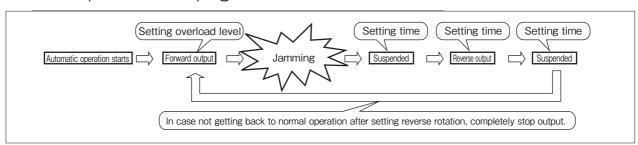
- 5. For the forward and reverse sequence program built-in type: TSM4000C1 Type······For crushers
  - Crusher blade protection and forward/reverse control

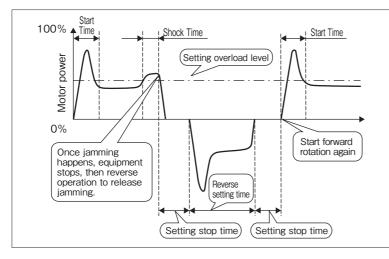


Precisely detects load on crusher blades. When a jam occurs, the machine automatically detects overload  $\rightarrow$  the machine stops  $\rightarrow$  moves into reverse  $\rightarrow$  stops  $\rightarrow$  moves forward repeatedly until the machine becomes un-jammed.

# Key point

Blade life span increases significantly. The sequence program necessary for forward and reverse movement is built-in, so it is easy to control the crusher.


# Industry


Crusher for waste disposal, reducer, screw conveyor, etc.

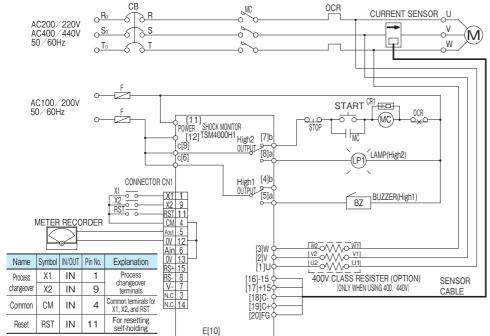
## Basic operations of TSM4000C1

• When overload occurs the machine is automatically run in reverse: The sequence program for forward and reverse rotation is built-in.

The sequence control program for the crusher is built-in.






## [Features]

- 1) Just by inputting the starting (forward movement) signal, stopping, reverse movement and restarting during overload can be controlled without an external sequencing program.
- 2) Even if the preset reverse setting time has past, when the machine does not return to normal operation, the stop signal is output and the device can be completely stopped.
- 3) The setting of overload level, stop time, and reverse running time can be easily done in the field.
- 4) To save energy it is possible to automatically stop when there is no load.



# 2. Economy type TSM4000H1..... For general industrial machinery

# ■ External connection



**■** Function of terminals ■ Parameter setting

| Current sensor Tconnection Tcsupply T |    |    |     |     |    |    |    |     |     |
|---------------------------------------|----|----|-----|-----|----|----|----|-----|-----|
| 20                                    | 19 | 18 | 17  | 16  | 15 | 14 | 13 | 12  | 11  |
| FG                                    | C+ | C- | +15 | -15 |    |    |    | PΟ\ | WER |
|                                       |    |    |     |     |    |    |    |     |     |
| U                                     | ٧  | W  | چوا | Ş۱  |    | þ  | Ş۱ |     | Ε   |
| 1                                     | 2  | 3  | 4   | 5   | 6  | 7  | 8  | 9   | 10  |
| Motor JL High1 JL HIGH2 JL Ground     |    |    |     |     |    |    |    |     |     |

input

| Name              | Symbol | IN/<br>OUT | Pin<br>No. | Explanation                  |  |
|-------------------|--------|------------|------------|------------------------------|--|
| Control power     | POWER  | IN         | 11         | Connection of control        |  |
| supply voltage    | POVVER | IIN        | 12         | power supply                 |  |
| Ground            | Е      | -          | 10         | Ground terminal              |  |
|                   | -15    | OUT        | 16         |                              |  |
|                   | 15     | OUT        | 17         |                              |  |
| Current<br>sensor | C-     | IN         | 18         | Sensor cable                 |  |
| 3011301           | C+     | IN         | 19         |                              |  |
|                   | FG     | _          | 20         |                              |  |
|                   | U      | IN         | 1          |                              |  |
| Motor<br>voltage  | ٧      | IN         | 2          | Motor voltage input terminal |  |
| vollage           | W      | IN         | 3          | lemma                        |  |
|                   | b      | OUT        | 4          | Relay contact output         |  |
| HIGH 1<br>output  | а      | OUT        | 5          | when the higher limit 1      |  |
| oulpui            | С      | OUT        | 6          | output is activated          |  |
|                   | b      | OUT        | 7          | Relay contact output         |  |
| HIGH 2<br>output  | а      | OUT        | 8          | when the higher limit 2      |  |
| Oulpui            | С      | OUT        | 9          | output is activated          |  |
|                   |        | N.C        | 13         |                              |  |
| No<br>connection  | _      | N.C        | 14         | Do not connect anything      |  |
|                   |        | N.C        | 15         |                              |  |

CB : Circuit breaker

F : Fuse

MC : Electromagnetic contactor for motor OCR : Over current relay

CR1 : CR absorber START : Start button STOP : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

### Note:

Data when

Data

- Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.
- Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

Contents

Number of moving average

Setting the auto inhibit

Setting the backlight

illumination time.

Monitor with motor input power

Monitor with the torque calculator by the power

operations

function.

|    |                 |                     | snipment |                                  |
|----|-----------------|---------------------|----------|----------------------------------|
| 1  | Motor Voltage   | (1)200-230V         | (1)      | Motor voltage 3 phase 200v class |
|    | William Vollage | (2)380-460V         | ( ' '    | Motor voltage 3 phase 400v class |
|    |                 | (1)0.1kW (11)15kW   |          |                                  |
|    |                 | (2)0.2kW (12)18.5kW |          |                                  |
|    |                 | (3)0.4kW (13)22kW   |          |                                  |
|    |                 | (4)0.75kW (14)30kW  |          |                                  |
| 2  | 114             | (5)1.5kW (15)37kW   | 0.75kW   | C                                |
| 2  | Motor kW        | (6)2.2kW (16)45kW   | U./ 3KVV | Setting motor capacity           |
|    |                 | (7)3.7kW (17)55kW   |          |                                  |
|    |                 | (8)5.5kW (18)75kW   |          |                                  |
|    |                 | (9)7.5kW (19)90kW   |          |                                  |
|    |                 | (10)11kW (20)110kW  |          |                                  |
| 3  | Start Time      | 0.1 ~ 20.0s         | 3.0      | Setting the start time           |
| 4  | Process         | 1 ~ 4               | 1        | Number of process                |
| 5  | High1 Level     | 5 ~ 200%            | 80       | Higher 1 level of process 1      |
| 6  | Shock Time      | MIN                 | 1.0      | History 1 sharely since          |
| 0  | H1              | 0.1 ~ 10.0s         | 1.0      | Higher 1 shock time              |
| 7  | Output Relay    | (1)Self-Hold        | (0)      | Selecting the output operation   |
| /  | H1              | (2)Auto-Reset       | (2)      | mode. (High1)                    |
| 8  | High2 Level     | 5 ~ 200%            | 100      | Higher 2 level of process 1      |
| 9  | Shock Time      | MIN                 | 1.0      |                                  |
| 9  | H2              | 0.1 ~ 10.0s         | 1.0      | Higher 2 shock time              |
| 10 | Output Relay    | (1)Self-Hold        | /1\      | Selecting the output operation   |
| 10 | H2              | (2)Auto-Reset       | (1)      | mode. (High2)                    |
|    |                 | (1)QUICK            |          | Number of moving average         |
|    |                 | r                   | 1        | i ivumber or movina average      |

(2)

(2)

Response

Auto Inhibit

Power/Torque

LCD Backlight

11

12

13

14

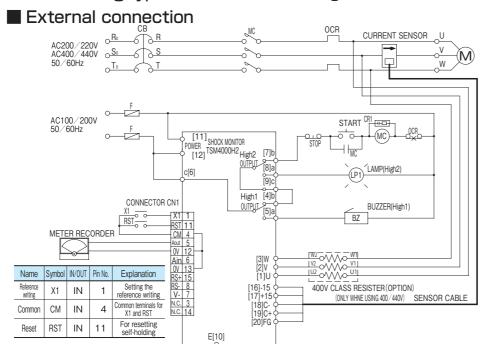
(2)NORMAL

(3)SLOW (1)On

(1)Power

(2)Torque (1)Always

(2)2min


(2)Off

Parameter

No



# 3. Load following type TSM4000H2······For general industrial machinery



CB : Circuit breaker

: Fuse

MC : Electromagnetic contactor for motor

OCR : Over current relay CR1 : CR absorber START : Start button STOP : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

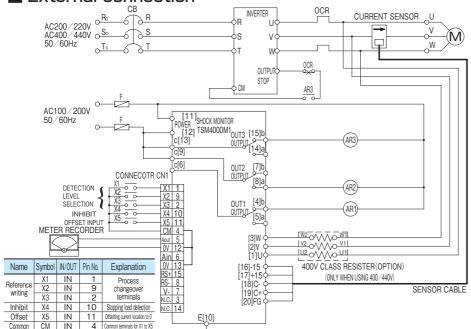
### Note:

- Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
   If using a 400/440V motor, use the 400V
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- 5. Use relay for minute electric current for [X1], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

## Parameter setting

| No. | Parameter          | Data                                                                                                                                                                                                               | Data when shipment | Contents                                                             |
|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|
| 1   | Motor Voltage      | (1)200-230V<br>(2)380-460V                                                                                                                                                                                         | (1)                | Motor voltage 3 phase 200v class<br>Motor voltage 3 phase 400v class |
| 2   | Motor kW           | (1)0.1kW (11)15kW<br>(2)0.2kW (12)18.5kW<br>(3)0.4kW (13)22kW<br>(4)0.75kW (14)30kW<br>(5)1.5kW (15)37kW<br>(6)2.2kW (16)45kW<br>(7)3.7kW (17)55kW<br>(8)5.5kW (18)75kW<br>(9)7.5kW (19)90kW<br>(10)11kW (20)110kW | 0.75kW             |                                                                      |
| 3   | Start Time         | 0.1 ~ 20.0s                                                                                                                                                                                                        | 3.0                | Setting the start time                                               |
| _4  | High1 Level        | 1 ~ 99%                                                                                                                                                                                                            | 10                 | Value of higher limit 1                                              |
| 5   | Shock Time<br>H1   | MIN<br>0.1 ~ 10.0s                                                                                                                                                                                                 | 1.0                | Setting HIGH 1 shock time                                            |
| 6   | Output Relay<br>H1 | (1)Self-Hold<br>(2)Auto-Reset                                                                                                                                                                                      | (2)                | Setting the output operation mode                                    |
| 7   | High2 Level        | 5 ~ 200%                                                                                                                                                                                                           | 100                | Value of higher limit 2                                              |
| 8   | Shock Time<br>H2   | MIN 0.1 ~ 10.0s                                                                                                                                                                                                    | 1.0                | Setting HIGH 2 shock time                                            |
| 9   | Output Relay<br>H2 | (1)Self-Hold<br>(2)Auto-Reset                                                                                                                                                                                      | (1)                | Selecting the output operation mode                                  |
| 10  | Response           | (1)QUICK<br>(2)NORMAL<br>(3)SLOW                                                                                                                                                                                   | (2)                | Number of moving average operations                                  |
| 11  | Auto Inhibit       | (1)On<br>(2)Off                                                                                                                                                                                                    | (2)                | Setting the auto inhibit function                                    |
| 12  | Offset Mode        | (1)Interval<br>(2)X1                                                                                                                                                                                               | (2)                | Setting the reference writing                                        |
| 13  | Interval Time      | 1 ~ 60s<br>1.1 ~ 60.0min                                                                                                                                                                                           | 50s                | Writing cycle                                                        |
| 14  | LCD Backlight      | (1)Always<br>(2)2min                                                                                                                                                                                               | (1)                | Setting the backlight illumination time.                             |
|     |                    |                                                                                                                                                                                                                    |                    |                                                                      |

■ Function of terminals


| _ (    | urre   | nt s   | enso   | or <sub>¬</sub> | ⊢ cor | No<br>necti | on ¬        | Pov<br>Sup | wer     |
|--------|--------|--------|--------|-----------------|-------|-------------|-------------|------------|---------|
| 20     | 19     | 18     | 17     | 16              | 15    | 14          | 13          | 12         | 11      |
| FG     | C+     | C-     | +15    | -15             |       |             |             | PΟ\        | WER     |
|        |        |        |        |                 |       |             |             |            |         |
|        |        |        |        |                 |       |             |             |            |         |
| U      | ٧      | W      | þ      | \$1             | 7     | þ           | ٥l          | 7          | Е       |
| U<br>1 | V<br>2 | W<br>3 | р<br>4 | <br>  5         | 6     | 7           | <br> <br> 8 | 9          | E<br>10 |

| Name              | Symbol | IN/  | Pin | Explanation                          |  |
|-------------------|--------|------|-----|--------------------------------------|--|
|                   | .,     | OUT  | No. | F 1 1 1                              |  |
| Control power     | POWER  | IN   | 11  | Connection of control                |  |
| supply voltage    | TOVVER | 11 4 | 12  | power supply                         |  |
| Ground            | Е      | -    | 10  | Ground terminal                      |  |
|                   | -15    | OUT  | 16  |                                      |  |
|                   | 15     | OUT  | 17  |                                      |  |
| Current<br>sensor | C-     | IN   | 18  | Sensor cable                         |  |
| 3611301           | C+     | IN   | 19  |                                      |  |
|                   | FG     | -    | 20  |                                      |  |
|                   | U      | IN   | 1   | A.A                                  |  |
| Motor<br>voltage  | ٧      | IN   | 2   | Motor voltage input<br>terminal      |  |
| vollage           | W      | IN   | 3   | - Iciliilai                          |  |
|                   | b      | OUT  | 4   |                                      |  |
| HIGH 1<br>output  | а      | OUT  | 5   | Relative value higher limit output 1 |  |
| Oulbui            | С      | OUT  | 6   | - Oulpui i                           |  |
|                   | b      | OUT  | 7   | Al la late                           |  |
| HIGH 2            | а      | OUT  | 8   | Absolute value higher limit output 2 |  |
| output            | С      | OUT  | 9   | - Ouipui 2                           |  |
|                   |        | N.C  | 13  |                                      |  |
| No<br>connection  | _      | N.C  | 14  | Do not connect anything              |  |
| connection        |        | N.C  | 15  | 1                                    |  |



4. Contact detection typeTSM4000M1 ······ For general industrial machinery

# External connection

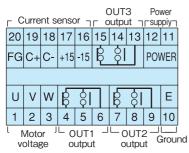


CB : Circuit breaker F

: Fuse

MC : Electromagnetic contactor for motor OCR : Over current relav

CR1 : CR absorber START: Start button STOP: Stop button


Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

### Note:

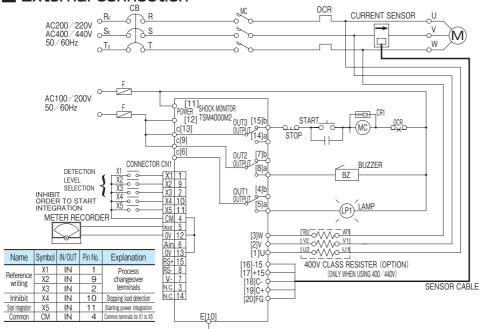
Data when

- 1. Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- 2. Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400Vclass resister shown in dashed line.
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [X4], [X5].
- O In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

## Function of terminals



## Parameter setting


| No. | Parameter            | Data                                                                                                                                                                                                               | shipment | Contents                                                                                      |
|-----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------|
| 1   | Parameter Lock       | (1)Unlocked<br>(2)Locked                                                                                                                                                                                           | (1)      | Can change parameter setting Can not change parameter setting unless in an unlocked condition |
| 2   | Motor Voltage        | (1)200-230V<br>(2)380-460V                                                                                                                                                                                         | (1)      | Motor voltage 3 phase 200v class<br>Motor voltage 3 phase 400v class                          |
| 3   | Motor kW             | (1)0.1kW (11)15kW<br>(2)0.2kW (12)18.5kW<br>(3)0.4kW (13)22kW<br>(4)0.75kW (14)30kW<br>(5)1.5kW (15)37kW<br>(6)2.2kW (16)45kW<br>(7)3.7kW (17)55kW<br>(8)5.5kW (18)75kW<br>(9)7.5kW (19)90kW<br>(10)11kW (20)110kW | 0.75kW   | ŭ , ,                                                                                         |
| 4   | Start Time           | 0.1 ~ 20.0s                                                                                                                                                                                                        | 3.0      | Setting the start time                                                                        |
| _ 5 | Process              | 1 ~ 8                                                                                                                                                                                                              | 1        | Number of process                                                                             |
| _6_ | OUT1 Level           | 1 ~ 99%                                                                                                                                                                                                            | 10       | Higher 2 level of process 1                                                                   |
| 7   | Shock Time<br>OUT1   | MIN<br>0.1 ~ 10.0s                                                                                                                                                                                                 | 1.0      | Setting HIGH 2 shock time                                                                     |
| 8   | Output Relay<br>OUT1 | (1)Self-Hold<br>(2)Auto-Reset                                                                                                                                                                                      | (2)      | Selecting the output operation mode. (OUT1)                                                   |
| 9   | OUT2 Level           | 1 ~ 99%                                                                                                                                                                                                            | 15       | Higher 1 level of process 1                                                                   |
| 10  | Shock Time<br>OUT2   | MIN 0.1 ~ 10.0s                                                                                                                                                                                                    | 1.0      | Setting HIGH 1 shock time                                                                     |
| 11  | Output Relay<br>OUT2 | (1)Self-Hold<br>(2)Auto-Reset                                                                                                                                                                                      | (2)      | Selecting the output operation mode. (OUT2)                                                   |
| 12  | OUT3 Level           | 5 ~ 200%                                                                                                                                                                                                           | 80       | Lower level of process 1                                                                      |
| 13  | Shock Time<br>OUT3   | MIN<br>0.1 ~ 10.0s                                                                                                                                                                                                 | 1.0      | Setting higher shock time                                                                     |
| 14  | Output Relay<br>OUT3 | (1)Self-Hold<br>(2)Auto-Reset                                                                                                                                                                                      | (1)      | Selecting the output operation mode.(OUT3)                                                    |
| 15  | Response             | (1)QUICK<br>(2)NORMAL<br>(3)SLOW                                                                                                                                                                                   | (2)      | Number of moving average operations                                                           |
| 16  | Inhibit Time         | IH<br>0.1 ∼ 10.0s                                                                                                                                                                                                  | IH       | Setting the inhibit time                                                                      |
| 17  | Auto Inhibit         | (1)On<br>(2)Off                                                                                                                                                                                                    | (2)      | Setting the auto inhibit function                                                             |
| 18  | LCD Backlight        | (1)Always<br>(2)2min                                                                                                                                                                                               | (1)      | Setting the backlight illumination time                                                       |

| Name              | Symbol | IN/<br>OUT | Pin<br>No. | Explanation                                       |
|-------------------|--------|------------|------------|---------------------------------------------------|
| Control power     | DOM/ED | INT        | 11         | Connection of control                             |
| supply voltage    | POWER  | IN         | 12         | power supply                                      |
| Ground            | Е      | -          | 10         | Ground terminal                                   |
|                   | -15    | OUT        | 16         |                                                   |
|                   | 15     | OUT        | 17         |                                                   |
| Current<br>Sensor | C-     | IN         | 18         | Sensor cable                                      |
| 0011301           | C+     | IN         | 19         |                                                   |
|                   | FG     | -          | 20         |                                                   |
|                   | U      | IN         | 1          | AA-1                                              |
| Motor<br>voltage  | ٧      | IN         | 2          | Motor voltage input                               |
| vollage           | W      | IN         | 3          | lemina                                            |
| OUT 1             | b      | OUT        | 4          | 51 1.1.1.1                                        |
| OUT 1<br>output   | а      | OUT        | 5          | Relative value higher limit output 1 after offset |
| oulpui            | С      | OUT        | 6          | oulput i dilet office                             |
| 0.17              | b      | OUT        | 7          | 51 1.1.1.1                                        |
| OUT 2<br>output   | а      | OUT        | 8          | Relative value higher limit output 2 after offset |
| ooipoi            | С      | OUT        | 9          |                                                   |
| OUT 0             | С      | OUT        | 13         | N                                                 |
| OUT 3<br>output   | а      | OUT        | 14         | Non-offset absolute value higher limit output.    |
| Colpoi            | b      | OUT        | 15         | nignor iiniii oolpol.                             |



# 5. Integral power typeTSM4000M2······ For general industrial machinery

# External connection



# Function of terminals

| Current sensor Tr output Trsuppiy                     |    |    |     |     |    |    |    |     |     |  |
|-------------------------------------------------------|----|----|-----|-----|----|----|----|-----|-----|--|
| 20                                                    | 19 | 18 | 17  | 16  | 15 | 14 | 13 | 12  | 11  |  |
| FG                                                    | C+ | C- | +15 | -15 | Ę. | ۶I |    | PΟ\ | WER |  |
|                                                       |    |    |     |     |    |    |    |     |     |  |
| U                                                     | ٧  | W  | þp  | Ş۱  |    |    | Ş۱ |     | Е   |  |
| 1                                                     | 2  | 3  | 4   | 5   | 6  | 7  | 8  | 9   | 10  |  |
| Motor JL OUT1 JL OUT2 JL Ground voltage output output |    |    |     |     |    |    |    |     |     |  |

| Name                         | Symbol | IN/<br>OUT | Pin<br>No. | Explanation                             |
|------------------------------|--------|------------|------------|-----------------------------------------|
| Control power supply voltage | POWER  | IN         | 11<br>12   | Connection of power source              |
| Ground                       | E      | _          | 10         | Ground terminal                         |
|                              | -15    | OUT        | 16         |                                         |
|                              | 15     | OUT        | 17         |                                         |
| Current<br>Sensor            | C-     | IN         | 18         | Sensor cable                            |
| Jenson                       | C+     | IN         | 19         |                                         |
|                              | FG     | _          | 20         |                                         |
|                              | U      | IN         | 1          |                                         |
| Motor<br>voltage             | ٧      | IN         | 2          | Motor voltage input terminal            |
| vollage                      | W      | IN         | 3          | 101111111111111111111111111111111111111 |
| OUT 1                        | b      | OUT        | 4          |                                         |
| OUT 1<br>output              | а      | OUT        | 5          | Lower limit output after integration    |
| ooipoi                       | С      | OUT        | 6          |                                         |
| OUT O                        | b      | OUT        | 7          |                                         |
| OUT 2<br>output              | а      | OUT        | 8          | Higher limit output after integration   |
| 501p01                       | С      | OUT        | 9          | miogranion                              |
| OUT 0                        | С      | OUT        | 13         | Higher limit output at                  |
| OUT 3<br>output              | а      | OUT        | 14         | instantaneous electric                  |
|                              | b      | OUT        | 15         | power                                   |

# : Circuit breaker

: Fuse

MC : Electromagnetic contactor for motor

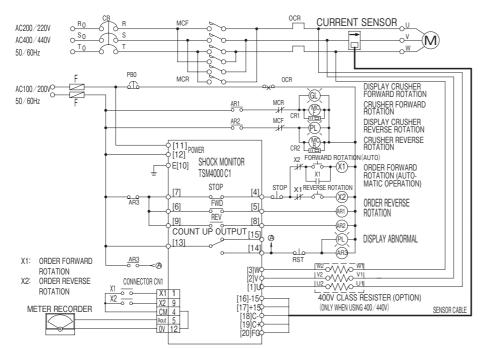
: Over current relay CR1 : CR filter START: Start button STOP: Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

### Note:

- 1. Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction
- 2. Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.

  5. Use relay for minute electric current for
- [X1], [X2], [X3], [X4], [X5].
- can not be detected correctly and the Shock Monitor will not work properly.


## Parameter setting

| No. | Parameter            | Data                                                                                                                                                                                                               | Data when shipment | Contents                                                                                      |
|-----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|
| 1   | Parameter Lock       | (1)Unlocked<br>(2)Locked                                                                                                                                                                                           | (1)                | Can change parameter setting Can not change parameter setting unless in an unlocked condition |
| 2   | Base Time            | 0.1 ~ 25s                                                                                                                                                                                                          | 2.5                | Changing the time for the rated of integrated power                                           |
| 3   | Integration Time     | X5,0.1 ∼ 25s                                                                                                                                                                                                       | 5.0                | Setting the time for power value integration                                                  |
| 4   | Matau Valtuus        | (1)200-230V                                                                                                                                                                                                        | (1)                | Motor voltage 3 phase 200V class                                                              |
| 4   | Motor Voltage        | (2)380-460V                                                                                                                                                                                                        | (1)                | Motor voltage 3 phase 400V class                                                              |
| 5   | Motor kW             | (1)0.1kW (11)15kW<br>(2)0.2kW (12)18.5kW<br>(3)0.4kW (13)22kW<br>(4)0.75kW (14)30kW<br>(5)1.5kW (15)37kW<br>(6)2.2kW (16)45kW<br>(7)3.7kW (17)55kW<br>(8)5.5kW (18)75kW<br>(9)7.5kW (19)90kW<br>(10)11kW (20)110kW | 0.75kW             | Setting motor capacity                                                                        |
| 6   | Start Time           | 0.1 ~ 20.0s                                                                                                                                                                                                        | 3.0                | Setting the start time                                                                        |
| 7   | Process              | 1 ~ 8                                                                                                                                                                                                              | 1                  | Number of process                                                                             |
| 8   | OUT1 Level           | 0 ~ 99%                                                                                                                                                                                                            | 0                  | Value of OUT1 integrated power lower limit                                                    |
| 9   | OUT2 Level           | 5 ~ 200%                                                                                                                                                                                                           | 80                 | Value of OUT2 integrated power upper limit                                                    |
| 10  | OUT3 Level           | 5 ~ 200%                                                                                                                                                                                                           | 100                | Value of OUT3 instantaneous power upper limit                                                 |
| 11  | Shock Time<br>OUT3   | MIN 0.1 ~ 10.0s                                                                                                                                                                                                    | 1.0                | Setting shock time OUT 3                                                                      |
| 12  | Output Relay<br>OUT3 | (1)Self-Hold<br>(2)Auto-Reset                                                                                                                                                                                      | (1)                | Selecting the output operation mode (OUT3)                                                    |
| 13  | Response             | (1)QUICK<br>(2)NORMAL<br>(3)SLOW                                                                                                                                                                                   | (2)                | Number of moving average operations                                                           |
| 14  | Inhibit Time         | IH<br>0.1 ∼ 10.0s                                                                                                                                                                                                  | IH                 | Setting inhibit time                                                                          |
| 15  | Auto Inhibit         | (1)On<br>(2)Off                                                                                                                                                                                                    | (2)                | Setting the auto inhibit function                                                             |
| 16  | LCD Backlight        | (1)Always<br>(2)2min                                                                                                                                                                                               | (1)                | Setting the backlight illumination time                                                       |



# 6. Built-in forward/reverse sequencer type TSM4000C1 ······For general industrial machinery

# ■ External connection



| Name                 | Symbol | IN/OUT | Pin No. | Explanation                    |
|----------------------|--------|--------|---------|--------------------------------|
| Auto operation input | X1     | IN     | 1       | Auto operation                 |
| Manual reverse order | X2     | IN     | 9       | Manual reverse operation       |
| Common               | СМ     | IN     | 4       | Common terminals for X1 and X2 |

# Parameter setting

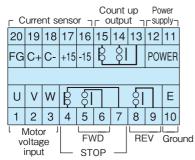
| F   | : Fuse                          |
|-----|---------------------------------|
| MCF | : Electromagnetic contactor for |
|     | motor to forward rotation       |
| MCR | : Electromagnetic contactor for |
|     | motor to reverse rotation       |

· Circuit breaker

OCR : Over current relay
AR1 : Auxiliary relay for forward
output

AR2 : Auxiliary relay for reverse output

AR3 : Auxiliary relay to light alarm lamp


CR1, 2: CR absorber
PB0 : Emergency stop button
RST : Alarm display reset

### Note:

CB

- Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.
- Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

## Function of terminals



| Name           | Symbol | IN/<br>OUT | Pin<br>No. | Explanation                            |
|----------------|--------|------------|------------|----------------------------------------|
| Control pwer   | POWER  | IN         | 11         | Connection of control normal community |
| supply voltage | POVVER | IIN        | 12         | Connection of control power supply     |
| Ground         | Е      | -          | 10         | Ground terminal                        |
|                | -15    | OUT        | 16         |                                        |
|                | 15     | OUT        | 17         |                                        |
| Current sensor | C-     | IN         | 18         | Sensor cable                           |
|                | C+     | IN         | 19         |                                        |
|                | FG     | _          | 20         |                                        |
| Motor voltage  | U      | IN         | 1          |                                        |
|                | ٧      | IN         | 2          | Motor voltage input terminal           |
|                | W      | IN         | 3          |                                        |
| FWD            | а      | OUT        | 5          | Order of forward rotation              |
|                | С      | OUT        | 6          | Order of forward rolation              |
| STOP           | b      | OUT        | 4          | Order of stop (1s shot)                |
| 3101           | С      | OUT        | 7          | Order of slop (15 silot)               |
| REV            | а      | OUT        | 8          | Order of reverse rotation              |
|                | С      | OUT        | 9          | Order of reverse rolation              |
| Count up       | С      | OUT        | 13         | Count un output                        |
| output         | а      | OUT        | 14         | Count-up output                        |
| corpor         | b      | OUT        | 15         | ( I S SHOI)                            |

| No. | Parameter                              | Data                                                                                                                                                                                                                        | Data when shipment | Contents                                                                                        |  |
|-----|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|--|
| 1   | Parameter lock                         | (1) Unlock<br>(2)Lock                                                                                                                                                                                                       | (1)                | Can change parameter setting Can not change parameter setting unless in an unlocked condition   |  |
| 2   | Motor voltage                          | (1)200-230V<br>(2)380-460V                                                                                                                                                                                                  | (1)                | Motor voltage 3 phase 200V class  Motor voltage 3 phase 400V class                              |  |
| 3   | Motor kW                               | (1)0.1kW (13)22kW (2)0.2kW (14)30kW (3)0.4kW (15)37kW (4)0.75kW (16)45kW (5)1.5kW (17)55kW (6)2.2kW (18)75kW (7)3.7kW (19)90kW (8)5.5kW (20)110kW (9)7.5kW (21)132kW** (10)11kW (22)150kW** (11)15kW (23)200kW** (12)18.5kW | 0.75kW             | Setting motor capacity.  **Parameter (21)132kWto (23)200kWcan beset only for a 400Vclass motor. |  |
| 4   | No load level                          | Unused $5\sim 200\%$                                                                                                                                                                                                        | Unused             | Prevention of idle running                                                                      |  |
| 5   | Overload level                         | 5 ~ 200%                                                                                                                                                                                                                    | 100                | Overload detection level                                                                        |  |
| 6   | Start time                             | 1 ∼ 300s                                                                                                                                                                                                                    | 5                  | Setting the start time                                                                          |  |
| 7   | No load continuing level               | 0.1 ~ 60min                                                                                                                                                                                                                 | 15.0               | Time between after underrunning no load level until COUNTUP output                              |  |
| 8   | Overload duration time (Overload time) | MIN 0.1 ~ 10.0s                                                                                                                                                                                                             | 1.0                | Shock time when overload occurs                                                                 |  |
| 9   | Pause time (1)                         | 1 ~ 600s                                                                                                                                                                                                                    | 10                 | Pause time during switching from forward to reverse rotation                                    |  |
| 10  | Reverse time                           | 1 ∼ 600s                                                                                                                                                                                                                    | 5                  | Reverse running time                                                                            |  |
| 11  | Pause time (2)                         | 1 ∼ 600s                                                                                                                                                                                                                    | 10                 | Pause time during switching from reverse to forward rotation                                    |  |
| 12  | No. of reverse rotation                | $1\sim 10$ times                                                                                                                                                                                                            | 5                  | No. of reverse rotation until COUNTUP output                                                    |  |
| 13  | Reverse                                | Plus                                                                                                                                                                                                                        | 10                 | Time to count the no. of reverse rotation.                                                      |  |
| 10  | rotation                               | 1 ∼ 600s                                                                                                                                                                                                                    | 10                 | Add to 1 cycle time                                                                             |  |
| 14  | Response                               | (1)QUICK<br>(2)NORMAL<br>(3)SLOW                                                                                                                                                                                            | (2)                | Number of moving average operations                                                             |  |
| 15  | LCD Backlight                          | (1)Always<br>(2)2min                                                                                                                                                                                                        | (1)                | Setting the backlight illumination time                                                         |  |



| M E M O |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |

| MEMO |      |      |
|------|------|------|
|      |      |      |
|      |      |      |
|      | <br> |      |
|      | <br> | <br> |
|      |      | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      | <br> | <br> |
|      | <br> | <br> |
|      | <br> |      |
|      | <br> | <br> |
|      | <br> | <br> |
|      |      |      |



| MEMO |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      | <br> |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |

| MEMO |      |      |
|------|------|------|
|      |      |      |
|      |      |      |
|      | <br> |      |
|      | <br> | <br> |
|      |      | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      | <br> | <br> |
|      | <br> | <br> |
|      | <br> |      |
|      | <br> | <br> |
|      | <br> | <br> |
|      |      |      |

# Safety Guide and Warranty



# WARNING

Death or serious injury may result from product misuse due to not following the instructions.

"Mechanical type Safety and Control devices"

- Begin inspection and maintenance after verifying that no load or rotational force is being applied to the equipment.
- Check the operation of the device periodically so that it can be sure to function properly when overload occurs.

"Electrical type Safety and Control devices"

- When carrying out an operation test or making a periodic inspection, make sure to verify that it functions properly as a protection device.
- Follow the instruction manual when carrying out megger testing because most electrical devices have certain requirements for megger testing.
- Check the operation of the device periodically so that it can be sure to function properly when overloaded occurs.

### "Common"

- Comply with the 2-1-1 General Standard of "Ordinance on Labor Safety and Hygiene".
- When performing maintenance or inspections:
  - 1) Wear proper work clothes and protective equipment (safety devices, gloves, shoes, etc.). To avoid an accident, make sure to perform maintenance and inspections in an appropriate environment.
  - 2) Make sure the power is switched off, and the machine has stopped completely before carrying out maintenance and inspections. Take the necessary measures to ensure the power is not turned back on.
  - 3) Follow the instruction manual.
  - 4) Wire according to the technical standards of Electrical Installation and company regulations. Take note of the cautions in this manual which explain installation direction, clearance and environmental conditions. Make sure to ground the device to prevent electrical shock and to improve noise resistance.
- When using with lifting equipment, install a suitable protection device for safety purposes, otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.



**CAUTION** Minor or moderate injury, as well as damage to the product may result from product misuse due to not following the instructions.

"Mechanical type Safety and Control devices"

- The strength of the equipment should be designed to withstand the load or rotational force when the device is activated due to overload.
- Wear damage may occur depending on the number and frequency of activations. Following the manual, check the functions and operations periodically. If something is not functioning properly, contact the distributor for repair.

"Electrical type Safety and Control devices"

- Consumable parts (tantalum electrolytic capacitors, relays, etc.) are built-in the products. Using the manual, periodically check the functions and operation of the device. If it is not functioning properly, contact the distributor for repair.
- Do not use the device in a corrosive gas environment. Sulphidizing gases (SO<sub>2</sub>, H<sub>2</sub>S) can especially corrode the copper and copper alloy used on PCBs and parts, and cause a malfunction.

"Common'

- Read the instruction manual carefully, and use the product properly. In case the instruction manual is not available, request one from the distributor where you purchased the product, or our sales office with the product name and model number.
- Deliver this instruction manual to the final customer who uses the Tsubaki Emerson product.

# Tsubaki Emerson Co.: hereinafter referred to as "Seller" Customer: hereinafter referred to as "Buyer" **Warranty:** Goods sold or supplied by Seller to Buyer: hereinafter referred to as "Goods"

### 1. Warranty period without charge

Effective 18 months from the date of shipment or 12 months from the first use of Goods, including the installation of the Goods to the Buyer's equipment or machine - whichever comes first.

### 2. Warranty coverage

Should any damage or problem with the Goods arise within the warranty period, given that the Goods were operated and maintained according to the instructions provided in the manual, the Seller will repair and replace at no charge once the Goods are returned to the Seller.

This warranty does not include the following:

- 1) Any costs related to removal of Goods from the Buyer's equipment or machine to repair or replace parts.
- 2) Cost to transport Buyer's equipment or machines to the Buyer's repair shop.
- 3) Costs to reimburse any profit loss due to any repair or damage and consequential losses caused by the Buyer.

### 3. Warranty with charge

Seller will charge for any investigation and repair of Goods caused

- 1) Improper installation by failing to follow the instruction manual.
- Insufficient maintenance or improper operation by the Buyer.
- Incorrect installation of the Goods to other equipment or machines.

- 4) Any modifications or alterations of Goods by the Buyer.
- 5) Any repair by engineers other than the Seller or those designated by the Seller.
- Operation in an environment not specified in the manual
- 7) Force Majeure or forces beyond the Seller's control such as natural disasters and injustices inflicted by a third party.
- Secondary damage or problems incurred by the Buyer's equipment or machines.
- Defective parts supplied or specified by the Buyer.
- 10) Incorrect wiring or parameter settings by the Buyer.
- 11) The end of life cycle of the Goods under normal usage.
- 12) Losses or damages not liable to the Seller.

### 4. Dispatch service

The service to dispatch a Seller's engineer to investigate, adjust or trial test the Seller's Goods is at the Buyer's expense.

## 5. Disclaimer

- 1) In our constant efforts to improve, Tsubaki Emerson may make changes to this document or the product described herein without notice.
- 2) Considerable effort has been made to ensure that the contents of this document are free from technical inaccuracies and errors. However, any such inaccuracies or errors reported will be gladly examined and amended as necessary.



The contents of this catalog are mainly to aid in product selection. Read the instruction manual thoroughly before using the product in order to use it properly.



## TSUBAKIMOTO CHAIN CO.

### Headquarters

Nakanoshima Mitsui Building 3-3-3 Nakanoshima, Kita-ku Osaka, 530-0005, Japan Phone: +81-6-6441-0011 URL : http://tsubakimoto.com

### **Chain & Power Transmission Sales**

1-3 Kannabidai 1-chome Kyotanabe, Kyoto, 610-0380, Japan Phone: +81-774-64-5022

### Group companies

### **NORTH and SOUTH AMERICA**

### ILS TSUBAKI POWER TRANSMISSION LLC

301 E. Marquardt Drive, Wheeling, IL 60090, U.S.A.

Phone: +1-847-459-9500 URL: http://www.ustsubaki.com

### **EUROPE**

### TSUBAKIMOTO EUROPE B.V.

Aventurijn 1200, 3316 LB Dordrecht, The Netherlands Phone: +31-78-620-4000 URL: http://tsubaki.eu

# 000 "TSUBAKI KABELSCHLEPP"

Prospekt Andropova 18, Building 6 115432 Moscow, Russia Phone : +7-499-418212 URL : http://tsubaki.eu

## **ASIA and OCEANIA**

### TAIWAN TSUBAKIMOTO CO.

No. 33, Lane 17, Zihciang North Road Gueishan Township Taoyuan County Taiwan R.O.C.

Phone : +886-3-3293827/8/9 URL : http://tsubakimoto.com.tw

### TSUBAKIMOTO CHAIN (SHANGHAI) CO. LTD.

Room 601, Urban City Centre, 45 Nanchang Road Huangpu District, Shanghai 2000020, People's Republic of China Phone :+86-21-5396-6651/2 URL : http://chunben.com

### PT. TSUBAKI INDONESIA TRADING

Wisma 46 - Kota BNI, 24th Floor, Suite 24.15 JI. Jend. Sudirman, Kav. 1, Jakarta 10220, Indonesia Phone :+62-21-571-4230/31 URL : http://tsubaki.sg

### TSUBAKI of CANADA LIMITED

1630 Drew Road, Mississauga, Ontario, L5S 1J6, Canada

Phone : +1-905-676-0400 URL : http://tsubaki.ca

### TSUBAKIMOTO U.K. LTD

Osier Drive, Sherwood Park, Annesley, Nottingham

NG15 0DX, United Kingdom Phone : +44-1623-688-700 URL : http://tsubaki.eu

### TSUBAKI BRASIL EQUIPAMENTOS INDUSTRIAIS LTDA. R. Pamplona, 1018, CJ. 73/74, Jd. Paulista

CEP 01405-001, São Paulo, S.P.Brazil Phone: +55-11-3253-5656 URL: http://tsubaki.ind.br

### TSUBAKI DEUTSCHLAND GmbH

ASTO Park Oberpfaffenhofen, Friedrichshafener Straße 1

D-82205, Gilching, Germany Phone : +49-8105-7307100 URL : http://tsubaki.eu

### TSUBAKIMOTO SINGAPORE PTE. LTD.

25 Gul Lane, Jurong, Singapore 629419 Phone :+65-6861-0422/3/4 URL : http://tsubaki.sg Vietnam Representative Office Phone: +84-8-3999-0131/2

TSUBAKIMOTO (THAILAND) CO. LTD. 388 Exchange Tower, 19th Floor Unit 1902 Sukhumvit Road, Klongtoey, Bangkok 10110, Thailand

Phone: +66-2-262-0667/8/9 URL: http://tsubaki.co.th

TSUBAKI POWER TRANSMISSION (MALAYSIA) SDN. BHD. No. 22, Jalan Astaka U8/84A, Bukit Jelutong Industrial Park Section U8, 40150 Shah Alam, Selangor, Malaysia

Phone : +60-3-7859-8585 URL : http://tsubaki.sg

## TSUBAKI AUSTRALIA PTY. LTD.

Unit E. 95-101 Silverwater Road Silverwater NSW 2128, Australia Phone : +61-02-9704-2500 URL : http://tsubaki.com.au New Zealand Branch Phone : +64-275-082-726

TSUBAKI INDIA POWER TRANSMISSION PTE. LTD. Chandrika Chambers No.4, 3rd Floor, Anthony Street Royapettah, Chennai, Tamil Nadu 600014, India

Phone :+91-44-4231-5251 URL : http://tsubaki.sg

Distributed by: